
332 Chapter 8 Sorting and Searching

ANSWER KEY

•< ,-,iyy>!.irrs;z??T7 ?•:•.:.:•: c^ci-:L:^.^AJ2iiB£Lr^^Ji^u^^iJ:L^-.i.^^j-j^ja&a •;. i n- ;•?•;• "i •\!n.-i,-;\

1. E 12. A 23. D

2. D 13. E 24. C

3. C 14. A 25. E

4. B 15. B 26. D

5. C 16. B 27. D

6. E 17. A 28. B

7. C 18. D 29. B

8. A 19. A 30. C

9. C 20. A 31. E

10. B 21. E 32. B

11. D 22. C 33. A

ANSWERS EXPLAINED
£#ii,£&zzzzLi£:,j:^^j^l^^^i^^szxl.&'^^:7U- .^~ ^i±:J±J

1. (E) The time and space requirements of sorting algorithms arc affected by all
three ofthe given factors, so all must be considered when choosing a particular
sortingalgorithm.

2. (D) Choice Bdoesn't make sense: The loop will be exited as soon as a value is
found that does not equal a[i]. Eliminate choice Abecause, ifvalue is not in the
array, a[i] will eventually go out of bounds. You need the i < n
part ofthe boolean expression toavoid this. The test i < n, however, must pre
cede value != a[i] sothat ifi < nfails, theexpression will beevaluated as false,
thetestwill beshort-circuited, andanout-of-range error will beavoided. Choice
C does not avoid thiserror. Choice E iswrong because bothparts of theexpres
sion must be true in order to continue the search.

3. (C) The binary search algorithm depends on the array being sorted. Sequential
search has no ordering requirement. Both depend on choice A, the length ofthe
list, while the other choices are irrelevant to both algorithms.

4. (B) Inserting a new element is quick and easy in an unsorted array—just add
it to the end of the list. Computing the mean involves finding the sum of the
elements and dividing by n, the number ofelements. The execution time is the
same whether the list is sorted ornot. Operation II, searching, is inefficient for an
unsorted list, since asequential search must be used. In sortedArr, the efficient
binary search algorithm, which involves fewer comparisons, could be used. In
fact, inasorted list, even asequential search would be more efficient than for an
unsorted list: If the search item were not in the list, the searchcould stop as soon
as the list elements were greater thanthesearch item.

5. (C) Suppose the array has 1000 elements and x is somewhere in the first 8slots.
The algorithm described will find x using no more than five comparisons. A
binary search, by contrast, will chop the array in half and do a comparison six
times before examining elements in the first 15 slots ofthe array (array size after
eachchop: 500, 250, 125,62,31,15).

Answers Explained 333

6. (E) The assertion states that the first element is greater than all the other el
ements in the array. This eliminates choices A and D. Choices B and C are
incorrect because you have no information about the relative sizes of elements
a[l]...a[N-l],

7. (C) When key is not in the array, index will eventually be large enough that
a [index] will cause an ArrayIndexOutOfBoundsException. In choices A and B,
the algorithm will find key without error. Choice D won't fail if0 is inthe array.
Choice E will work ifa[key] is notoutof range.

8. (A) The algorithm uses the fact that array v is sorted smallest to largest.
The while loop terminates—which means that the search stops—as soon as
v[index] >= key.

9. (C) The first pass uses the interval a[0]... a[7]. Since mid = (0 + 7)/2 = 3,
low gets adjusted to mid +1=4, and the second pass uses the interval
a[4]...a[7].

10. (B) First pass: compare 27 with a[3], since low = 0high = 7mid = (0+7)/2= 3.
Second pass: compare 27 with a[5],since low = 4high = 7mid = (4 + 7)/2 = 5.
Third pass: compare 27 with a[6], since low = 6high = 7mid = (6 + 7)/2 = 6.
Thefourth pass doesn't happen, since low = 6, high= 5, and therefore the test
(low <= high) fails. Here's thegeneral rule for finding thenumber of iterations
when key is not in the list: If n is the number ofelements, round n up to the
nearest power of2, which is 8 in this case. 8= 23, which implies 3 iterations of
the"divide-and-comparc" loop.

11. (D) Themethod returns the index of the key parameter, 4. Since a[0] contains
4, binSearch(4) will return 0.

12. (A) Try 4. Here are the values for low, high, and mid when searching for 4:
First pass: low = 0, high = 7, mid = 3
Second pass: low = 0, high = 2, mid = 1

After this pass, high gets adjusted tomid -1, which is 0. Now low equals high,
and the test for the while loop fails. The method returns —1, indicating that 4
wasn't found.

13. (E) When theloop isexited, either key = a[mid] (and mid has been returned) or
key has not been found, in which case either a[low] < key < a[high] or key is
not in the array. The correct assertion must account for all three possibilities.

14. (A) 30,000 = 1000 x 30 « 210 x 25 = 215. Since a successful binary search in
the worst case requires log2 n iterations, 15 iterations will guarantee that key is
found. (Note that 30,000 < 210 x 25 = 32,768.)

15. (B) Startwiththesecond element in thearray.

After 1stpass: 7 19 5 4 12

After2ndpass: 9 7 1,5 4 12
After3rd pass: 9 7 5 1 4 12

16. (B) An insertion sort compares a[l] and a[0]. If they are not in the correct
order, a[0] is moved and a[l] is inserted in its correct position, a[2] is then
inserted in its correct position, and a[0] and a[l] are moved ifnecessary, and so
on. Since Bhas only one element out oforder, it will require the fewest changes.

334

Optional topic

Chapter 8 Sorting and Searching

17. (A) This list is almost sorted in reverse order, which is the worst case for insertion
sort, requiring the greatest number ofcomparisons and moves.

18. (D) j >= 0 is a stopping condition that prevents an element that is larger than
all those to the left of it from going off the left end of the array. If no error
occurred, it means that the largest element in the array was a[0], which was true
in situations Iand II. Omitting the j >= 0test will cause a run-time (out-of-range)
error whenever temp is bigger than all elements to the left ofit (i.e., the insertion
point is0).

19. (A) After 1st pass:

After 2nd pass:

After3rd pass:

20. (A) Look at asmall array that isalmost sorted:

10 8 9 6 2

For insertion sort you need four passes through this array.
Thefirst pass compares 8and 10—one comparison, nomoves.
Thesecond pass compares 9 and 8, then 9 and 10. Thearray becomes
10 9 8 6 2—two comparisons, two moves.
Thethirdand fourth passes compare 6and 8, and 2 and 6—no moves.
In summary, there are approximately one or two comparisons per pass and no
more than two moves per pass.
For selection sort, there are four passes too.
The first pass finds the biggest element in the array and swaps it into the first
position.
The array is still 10 8 9 6 2—four comparisons. There are two moves if your
algorithm makes the swap in this case, otherwise no moves.
The second pass finds the biggest element from a[1] toa[4] and swaps it into the
second position: 10 9 8 6 2—three comparisons, twomoves.
For the third pass there are two comparisons, and one for the fourth. There are
zero or two moves each time.

Summary: 4+ 3+ 2+1 total comparisons and a possible two moves per pass.
Notice that reason I is valid. Selection sort makes the same number of compar
isons irrespective of the state of the array. Insertion sort docs far fewer com
parisons if the array is almost sorted. Reason II is invalid. There are roughly
the same number of data movements for insertion and selection. Insertion may
even have more changes, depending on how far from their insertion points the
unsorted elements are. Reason III is wrong because insertion and selection sorts
have the same space requirements.

21. (E) In the first pass through the outer for loop, the smallest clement makes its
way to the end ofthe array. In the second pass, the next smallest element moves
to the second last slot, and so on. This is different from the sorts in choices A
through I); in fact, it is a bubble sort.

22. (C) Reject reason I. Mergesort requires both amerge and amergeSort method-
wore code than the relatively short and simple code for insertion sort. Reject
reason II. Themerge algorithm uses atemporary array, which means more storage
space than insertion sort. Reason III is correct. For long lists, the "dividc-and-
conquer" approach ofmergesort gives it a faster run time than insertion sort.

109 42 -3

109 89 -3

109 89 70

13 89 70 2

13 42 70 2

13 42 -3 2

Answers Explained

23. (D) Since thesearch is for a four-letter sequence, the idea in this algorithm isthat
ifyou examine every fourth slot, you'll find a letter in the required sequence very
quickly. When you find oneof these letters, you can then examine adjacent slots
to check ifyou have the required sequence. This method will, on average, result
in fewer comparisons than the strictly sequential search algorithm in choice A.
Choice B is wrong. If you encounter a "q," "r," or "s" without a "p" first, you
can't have found "pqrs." Choice C iswrong because you may miss thesequence
completely. Choice E doesn't makesense.

24. (C) The main precondition for a binary search is that the list isordered.

25. (E) This algorithm is just a recursive implementation of a sequential search. It
starts by testing ifthe last element in thearray, a[n-l], isequal to value. Ifso, it
returns the index n - 1. Otherwise, it calls itself with n replaced by n - 1. The
net effect is that it examines a[n-l], a[n-2], The base case, if (n == 0),
occurs when there arc no elements left to examine. In this case, the method
returns —1, signifying that value was not in the array.

26. (D) Thepartition algorithm performs a series of swaps until the pivot clement
is swapped into its final sorted position (see p. 314). No temporary arrays or
external files are used, nor is a recursive algorithm invoked. The merge method is
used for mergesort, not quicksort.

27. (D) Recall the mergesort algorithm:

Divide arr into two parts.
Mergesort the left side.
Mergesort the right side.
Merge the twosides intoa single sorted array.

Themerge method is used for the last step of thealgorithm. It does not do any
sortingor partitioning of the array, which eliminates choices A,B, andC.Choice
Eis wrong because merge starts with asingle array that has two sorted parts.

28. (B) Round 600 up to the next power of 2, which is 1024 = 210. For the worst
case, the array will be split in half log, 1024 = 10 times.

29. (B) Ifthe list is sorted in reverse order, each pass through the array will involve
the maximum possible number ofcomparisons and the maximum possible num
ber of element movements if an insertion sort is used.

30. (C) Reason I is valid—it's always desirable to hide implementation details from
users of a method. Reason II isvalid too—since Quicksort and MergeSort imple
ment theSort interface, they must have a sort method with noparameters. But
parameters arc needed tomake the recursion work. Therefore each sort requires
a helper method with parameters. Reason III is invalid in this particular example
ofhelper methods. There are many examples in which a helper method enhances
efficiency (e.g., Example 2 on p. 283), but the sort example is not one of them.

31. (E) Since Sort is an interface, you can't create an instance of it. This eliminates
choices Band D. The sort methods alter the contents of strArray. Thus invok
ing q.sortO followed by m.sortO means thatm.sort will always operate on a
sorted array, assuming quicksort works correctly! In order to test both quick
sort and mergesort on unsorted arrays, you need to make a copy of theoriginal
array or create a different array. Eliminate choice A (and B again!), which docs
neither of these. Choice C is wrong because it calls the private sort methods
ot the classes. TheSort interface has just a single public method, sort, with no

335

Optional topic

Optional topic

336

(continued)

Chapter 8 Sorting and Searching

arguments. The two classes shown must provide an implementation for this sort
method, and it is this method that must be invoked in the client program.

32. (B) 1million = I06 = (103)2 « (210)2 = 220. Thus, there will be on the order of
20comparisons.

33. (A) Abinary search, on average, has asmaller run time than asequential search.
All ofthe sorting algorithms have greater run times than asequential search. This
is because a sequential search looks at each element once. Asorting algorithm,
however, processes other elements in the array for each clement it looks at.

