318 Chapter 8 Sorting and Searching

MULTIPLE-CHOICE QUESTIONS ON SORTING AND
SEARCHING

1. The decision to choose a particular sorting algorithm should be made based on

I Run-time efficiency of the sort
II Size of the array
Il Space efficiency of the algorithm

(A) Tonly

(B) I only

(C) Mlonly

(D) Iand I only
(E) LI, and IIf

2. The following code fragment does a sequential search to determine whether a
given integer, value, is stored in an array a[0] ...a[n-1].

int i = 0;
while (/* boolean expression */)
{
i++;
}
if (i == n)
return -1; //value not found
else
return i; // value found at location i

Which of the following should replace /* boolean expression #/ so that the algo-
rithm works as intended?

(A) value = a[il

(B) i < n && value == a[il

(C) value != ali]l && i <n

(D) i < n && value != a[il]

(E) i <n || value != a[i]

3. A feature of data that is used for a binary search but not necessarily used for a
sequential search is
(A) length of list.
(B) type of data.
(C) order of data.
(D) smallest value in the list.
(E) median value of the data.

Muiltiple-Choice Questions on Sorting and Searching

4. Array unsortedArr contains an unsorted list of integers. Array sortedArr con-

tains a sorted list of integers. Which of the following operations is more efficient
for sortedArr than unsortedArr? Assume the most efficient algorithms are used.

I Inserting a new element
I Searching for a given element
Il Computing the mean of the elements

(A) Ionly

(B) ITonly

(C) M only

(D) Iand I only
(E) L1II,and ITT

5. An algorithm for searching a large sorted array for a specific value x compares

every third item in the array to x until it finds one that is greater than or equal
to x. When a larger value is found, the algorithm compares x to the previous
two items. If the array is sorted in increasing order, which of the following de-
scribes all cases when this algorithm uses fewer comparisons to find x than would
a binary search?

(A) It will never use fewer comparisons.

(B) When x is in the middle position of the array

(C) When x is very close to the beginning of the array

(D) When x is very close to the end of the array

(E) When x is not in the array

6. Assume that af0] ... a[N-1] is an array of N positive integers and that the fol-

lowing assertion is true:

af0] > a(k] forallksuchthat0<k <N

Which of the following must be true?

(A) The array is sorted in ascending order.
(B) The array is sorted in descending order.
(C) All values in the array are different.

(D) al0] holds the smallest value in the array.
(E) al0] holds the largest value in the array.

7. The following code is designed to set index to the location of the first occurrence

of key in array a and to set index to —1 if key is not in a.

index = 0;

while (a(index] != key)
index++;

if (alindex] != key)
index = -1;

In which case will this program definitely fail to perform the task described?
(A) When key is the first element of the array

(B) When key is the last element of the array

(C) When key is not in‘the array

(D) When key equals 0

(E) When key equals a[key]

319

320 Chapter 8 Sorting and Searching

8. Refer to method search.

/* Precondition: v[0]...v[v.length-1] are initialized.
* Postcondition: Returns k such that -1 <= k <= v.length-1.

* If k >= 0 then v[k] == key. If k == -1,

* then key != any of the elements in v. =/
public static int search(int[] v, int key)
{

int index = 0;

while (index < v.length && v[index] < key)
index++;

if (index != v.length)
return index;

else
return -1;

}

Assuming that the method works as intended, which of the following should be
added to the precondition of search?

(A) v is sorted smallest to largest.

(B) v issorted largest to smallest.

(C) v is unsorted.

(D) There is at least one occurrence of key in v.

(E) key occurs no more than once in v.

Questions 9-13 are based on the binSearch method and the private instance variable
a for some class:

private int[] a;

/* Does binary search for key in array a[0])...a[a.length-1],

* sorted in ascending order.
* Postcondition: Returns index such that al[index]==key.
* If key not in a, returns -1. */
public int binSearch(int key)
{

int low = 0;
int high = a.length - 1;
while (low <= high)

{
int mid = (low + high) / 2;
if (a(wid] == key)
return mid;
else if (a[mid] < key)
low = mid + 1;
else
high = mid - 1;
}
return -1;

Multiple-Choice Questions on Sorting and Searching

A binary search will be performed on the following list.

10.

11.

12.

13.

alo] al1] af2] a[3] a[4] al5] al6] al7)
4 7 9 11 20 24 30 41

To find the key value 27, the search interval after the first pass through the while
loop will be

(A) al0] ...a[7]) .

(B) al5] ...al6)

(C) al4)...al7]

D) al2] ...al6]

(E) al6) ...al?)

How many iterations will be required to determine that 27 is not in the list?
(A) 1
(B) 3
(C) 8
D) 27

(E) An infinite loop since 27 is not found

What will be stored in y after executing the following?
int y = binSearch(4);

(A) 20
(B) 7
€ 4
®) o
(E) -1

If the test for the while loop is changed to
while (low < high)

the binSearch method does not work as intended. Which value in the given list
will not be found?

(A) 4

(B) 7

C) 11

D) 24

(E) 30

For binSearch, which of the following assertions will be true following every
iteration of the while loop?

(A) key =al[mid] or key is not in a.

(B) allow]l <key < alhigh]

(C) low<mid <high

(D) key =almid], or allow] < key < alhigh]

(E) key=almid], or a[low] <key < al[high], or key is not in array a.

321

322

Chapter 8 Sorting and Searching

14. A large sorted array containing about 30,000 elements is to be searched for a value
key using an iterative binary search algorithm. Assuming that key is in the array,
which of the following is closest to the smallest number of iterations that will
guarantee that key is found? Note: 10° 2 2'°.

(A) 15
(B) 30
(C) 100
(D) 300
(E) 3000

For Questions 15-18 refer to the insertionSort method and the private instance vari-
able a, both in a Sorter class.

private Comparablel] a;

/* Precondition: a[0],a[1]...ala.length-1] is an unsorted array

*

of Comparable objects.

* Postcondition: Array a is sorted in descending order. =*/
public void insertiomSort()

{

for (int i = 1; i < a.length; i++)

{

Comparable temp = al[il;

int j =1 - 1;
while (j >= 0 &% temp.compareTo(al[jl) > O)
{

a[j+1] = aljl;
i

}

alj+1] = temp;

15. An array of Integer is to be sorted biggest to smallest using the insertionSort
method. If the array originally contains

17 95 4 12

what will it look like after the third pass of the for loop?

(A) 9715412
(B)9751412
(C) 1297154
D) 1297541
(E)97 12541

16. When sorted biggest to smallest with insertionSort, which list will need the

fewest changes of position for individual elements?

(A) 5,1,2,3,4,9
(B) 9,5,

Multiple-Choice Questions on Sorting and Searching 323

17. When sorted biggest to smallest with insertionSort, which list will need the
greatest number of changes in position?
(A) 5’ 1’ 2’ 3’ 4’ 7’ 6’ 9

18. While typing the insertionSort method, a programmer by mistake enters
while (temp.compareTo(a[jl) > 0)
instead of
vhile (j >= 0 && temp.compareTo(al[j]) > 0)

Despite this mistake, the method works as intended the first time the program-
mer enters an array to be sorted in descending order. Which of the following
could explain this?

I The first element in the array was the largest element in the array.
II The array was already sorted in descending order.
I The first element was less than or equal to all the other elements in the array.

(A) Ionly

(B) only

(C) M only

(D) Iand Il only
(E) Iand I only

324 Chapter 8 Sorting and Searching

19. Consider the following class.

/* A class that sorts an array of objects from
* largest to smallest using a selection sort. */
public class Sorter

{

private Comparablel[] a;

public Sorter(Comparable[] arr)
{a=arr;}

/* Swap a[i] and a(j] in array a. */
private void swap(int i, int j)
{ /* implementation not shown */ }

/* Sort array a from largest to smallest using selection sort.
* Precondition: a is an array of Comparable objects. */
public void selectionSort()
{
for (int i = 0; i < a.length - 1; i++)
{
//find max element in ali+1] to a[n-1]
Comparable max = alil;
int maxPos = i;
for (int j = 1 + 1; j < a.length; j++)
if (max.compareTo(a[jl) < 0) //max less than al(j]
{
max = aljl;
maxPos = j;
}
swap(i, maxPos); //swap al[i]l and a([maxPos]

}

If an array of Integer contains the following elements, what would the array
look like after the third pass of selectionSort, sorting from high to low?

89 42 -3 13 109 70 2

(A) 109 89 70 13 42 -3 2
B) 109 8 70 42 13 2 -3
(C 109 8 70 -3 2 13 42
©) 8 42 13 =3 109 70 2
() 109 89 42 -3 13 70 2

Multiple-Choice Questions on Sorting and Searching

20. The elements in a long list of integers are roughly sorted in decreasing order. No
more than 5 percent of the elements are out of order. Which of the following is
a valid reason for using an insertion sort rather than a selection sort to sort this
list into decreasing order?

I' There will be fewer comparisons of elements for insertion sort.
IT' There will be fewer changes of position of elements for insertion sort.
[T There will be less space required for insertion sort.

(A) Tonly

(B) ITonly

(C) only

(D) Tand T only
(E) L1 and III

21. The code shown sorts array a[0] ...a[a.length-1] in descending order.

public static void sort(Comparable[] a)

{
for (int i = 0; i < a.length - 1; i++)
for (int j = 0; j < a.length - i = 1; j++)
if (alj].compareTo(alj+1]) < 0)
swap(a, j, j + 1); //swap alj] and a[j+1]
}

This is an example of
(A) selection sort.

(B) insertion sort.
(C) mergesort.

(D) quicksort.

(E) none of the above.

22. Which of the following is a valid reason why mergesort is a better sorting algo-
rithm than insertion sort for sorting long lists?

I Mergesort requires less code than insertion sort.
IT' Mergesort requires less storage space than insertion sort.
III Mergesort runs faster than insertion sort.

(A) lonly

(B) Il only

(C) I only

(D) Iand IT only
(E) ITand 11T only

23. A large array of lowercase characters is to be searched for the pattern “pqrs.” The
first step in a very efficient searching algorithm is to look at characters with index
(A) 0,1,2,...untla“p” is encountered.
(B) 0, 1,2,...untl any letter in “p” ... “s” is encountered.
(C) 3,7, 11,...until an “s” is encountered.
(D) 3,7, 11, ...unul any letter in “p” ... "“s” is encountered.
(E) 3,7, 11,...until any letter other than “p” ... “s” is encountered.

325

Optional topic

326 Chapter 8 Sorting and Searching

24. The array names[0], names[1], ..., names [9999] is a list of 10,000 name strings.
The list is to be searched to determine the location of some name X in the list.
Which of the following preconditions is necessary for a binary search?

(A) There are no duplicate names in the list.
(B) The number of names N in the list is large.
(C) The list is in alphabetical order.

(D) Name X is definitely in the list.

(E) Name X occurs near the middle of the list.

25. Consider the following method:

//Precondition: a[0],a[1)...aln-1] contain integers.
public static int someMethod(int[] a, int n, int value)

{
if (n == 0)
return -1;
else
{
if (a[n-1] == value)
return n - 1;
else
return someMethod(a, n - 1, value);
}
}

The method shown is an example of
(A) insertion sort.
(B) mergesort.
(C) selection sort.
(D) binary search.
(E) sequential search.
. . 26. The partition method for quicksort partitions a list as follows:
Optional topic
(i) A pivot element is selected from the array.
(ii) The elements of the list are rearranged such that all elements to the left
of the pivot are less than or equal to it; all elements to the right of the
pivot are greater than or equal to it.

Partitioning the array requires which of the following?
(A) A recursive algorithm

(B) A temporary array

(C) An external file for the array

(D) A swap algorithm for interchanging array elements
(E) A merge method for merging two sorted lists

27. Assume that mergesort will be used to sort an array arr of n integers into increas-
ing order. What is the purpose of the merge method in the mergesort algorithm?
(A) Partition arr into two parts of roughly equal length, then merge these parts.
(B) Use a recursive algorithm to sort arr into increasing order.
(C) Divide arr into n subarrays, each with one element.
(D) Merge two sorted parts of arr into a single sorted array.
(E) Merge two sorted arrays into a temporary array that is sorted.

Multiple-Choice Questions on Sorting and Searching

28. A binary search is to be performed on an array with 600 elements. In the worst
case, which of the following best approximates the number of iterations of the
algorithm?

(A) 6
(B) 10
(C) 100
(D) 300
(E) 600

29. A worst case situation for insertion sort would be

I A list in correct sorted order.
IT A list sorted in reverse order.
III A list in random order.

(A) Ionly

(B) Monly

(C) M only

(D) Land Il only
(E) I and III only

327

328

Optional topic

Chapter 8 Sorting and Searching

Questions 30 and 31 are based on the Sort interface and MergeSort and QuickSort
classes shown below.

public interface Sort
{

void sort();

public class MergeSort implements Sort
{

private Comparable[] a;

//constructor
public MergeSort(Comparable[] arr)
{a = arr; }

//Merge al[lb] to a[mil and a[mi+1] to alubl.
//Precondition: a[lb] to a[mi] and a[mi+1] to alub] both
// sorted in increasing order.

private void merge(int 1b, int mi, int ub)

{ /* Implementation mot shown. */ }

//Sort alfirst]..allast] in increasing order using mergesort.
//Precondition: a is an array of Comparable objects.

private void sort(int first, int last)

{

int mid;

if (first != last)

{
mid = (first + last) / 2;
sort(first, mid);
sort(mid + 1, last);
merge(first, mid, last);

.

//Sort array a from smallest to largest using mergesort.
//Precondition: a is an array of Comparable objects.
public void sort()
{
sort(0, a.length - 1);
}
}

public class QuickSort implements Sort

{

private Comparable[] a;

//constructor
public QuickSort(Comparable[] arr)
{a=arr; }

//Swap alil and a[j] in array a.
private void swap(int i, int j)
{ /* Implementation not shown. */ }

Multiple-Choice Questions on Sorting and Searching

//Returns the index pivPos such that a[first] to a[last]

//is partitioned.

//alfirst..pivPos] <= a[pivPos] and alpivPos..last] >= a[pivPos]
private int partition(int first, int last)

{ /* Implementation not shown. */ }

//Sort al[first]..a[last] in increasing order using quicksort.
//Precondition: a is an array of Comparable objects.
private void sort(int first, int last)

{
if (first < last)
{
int pivPos = partition(first, last);
sort(first, pivPos - 1);
sort(pivPos + 1, last);
}
}

//Sort array a in increasing order.
public void sort()
i

sort(0, a.length - 1);

30. Notice that the MergeSort and QuickSort classes both have a private helper
method that implements the recursive sort routine. For this example, which

of the following is 7ot a valid reason for having a helper method?

I The helper method hides the implementation details of the sorting algo-

rithm from the user.

II' A method with additional parameters is needed to implement the recursion.
[II' Providing a helper method increases the run-time efficiency of the sorting

algorithm.

(A) TIonly
(B) II only
(C) I only

(D) Tand IT only
(E) I, 11, and III

(continued)

329

330 Chapter 8 Sorting and Searching

(continued) 31. A piece of code to test the QuickSort and MergeSort classes is as follows:

//Create an array of Comparable values
Comparable[] strArray = makeArray(strList);
writeList (strArray);

/* more code */

where makeArray creates an array of Comparable from a list strList. Which
of the following replacements for /* more code */ is reasonable code to test
QuickSort and MergeSort? You can assume writeList correctly writes out an
array of String.

(A) Sort q = new QuickSort(strArray);
Sort m = new MergeSort(strArray);
q.sort();
writeList (strArray);
m.sort();
writeList(strArray);

(B) QuickSort q = new Sort(strArray);
MergeSort m = new Sort(strArray);
q.sort();
writeList(strArray);
m.sort();
writeList(strArray);

1l

(C) Sort q = new QuickSort(strArray);
Sort m = new MergeSort(strArray);
Comparable[] copyArray = makeArray(strList);
q.sort(0, strArray.length - 1);
writeList(strArray);
m.sort(0, copyArray.length - 1);
writeList (copyArray) ;

(D) QuickSort q = new Sort(strArray);
Comparable[] copyArray = makeArray(strList);
MergeSort m = new Sort(strArray);
q.sort();
writeList(strArray);
m.sort();
writeList (copyArray);

(E) Sort q = new QuickSort(strArray);
Comparable[] copyArray = makeArray(strList);
Sort m = new MergeSort (copyArray);
g.sort();
writeList(strArray);
m.sort();
writeList (copyArray);

Multiple-Choice Questions on Sorting and Searching

32

33.

Consider a binary search algorithm to search an ordered list of numbers. Which
of the following choices is closest to the maximum number of times that such
an algorithm will execute its main comparison loop when searching a list of 1
million numbers?

(A) 6

(B) 20

(C) 100

D) 120

(E) 1000

Consider these three tasks:

I A sequential search of an array of » names
II' A binary search of an array of 7 names in alphabetical order
Il An insertion sort into alphabetical order of an array of » names that are
initially in random order

For large n, which of the following lists these tasks in order (from least to great-
est) of their average case run times?

(A) I 1 I
® I I II
© 1o m I
O m I I

E) m o I

331

