Sorting and Searching

Critics search for ages for the wrong word, which,
to give them credit, they eventually find.
—Peter Ustinov (1952)

Chapter Goals
e Java implementation of sorting e Recursive sorts: mergesort and
algorithms quicksort
e Selection and insertion sorts e Sequential search and binary
search

n each of the following sorting algorithms, assume that an array of 7 elements, a[0],
a[1],...,aln-1], is to be sorted in ascending order.

SORTS: SELECTION AND INSERTION SORTS

Selection Sort

This is a “search-and-swap” algorithm. Here’s how it works.

Find the smallest element in the array and exchange it with a[0], the first element.
Now find the smallest element in the subarray a[1] ...a[n-1] and swap it with a[1],
the second element in the array. Continue this process until just the last two elements
remain to be sorted, a[n-2] and a[n-1]. The smaller of these two elements is placed
in a[n-2]; the larger, in a[n-1]; and the sort is complete.

Trace these steps with a small array of four elements. The unshaded part is the
subarray still to be searched.

i 8 4 6 after first pass
8 ER 3 6 after second pass
I8 Bs Bo |8 after third pass

311

312

Both insertion and
selection sorts are
inefficient for large 7.

Chapter 8 Sorting and Searching

NOTE

1. For an array of n elements, the array is sorted after n — 1 passes.
2. After the kth pass, the first & elements are in their final sorted position.

Insertion Sort

Think of the first element in the array, a[0], as being sorted with respect to itself. The
array can now be thought of as consisting of two parts, a sorted list followed by an
unsorted list. The idea of insertion sort is to move elements from the unsorted list
to the sorted list one at a time; as each item is moved, it is inserted into its correct
position in the sorted list. In order to place the new item, some elements may need to
be moved down to create a slot.

Here is the array of four elements. In each case, the boxed element is “it,” the next
element to be inserted into the sorted part of the list. The shaded area is the part of
the list sorted so far.

8 4 6
18 R 6 after first pass
1 P48 B8 after second pass

1 & §61 B8 after third pass

NOTE

1. For an array of # clements, the array is sorted after n — 1 passes.

2. After the kth pass, a[0], a[1], ..., a[k] are sorted with respect to each other
but not necessarily in their final sorted positions.

3. The worst case for insertion sort occurs if the array is initially sorted in reverse
order, since this will lead to the maximum possible number of comparisons
and moves.

4. The best case for insertion sort occurs if the array is already sorted in increasing
order. In this case, each pass through the array will involve just one compari-
son, which will indicate that “it” is in its correct position with respect to the
sorted list. Therefore, no elements will need to be moved.

RECURSIVE SORTS: MERGESORT AND QUICKSORT

Selection and insertion sorts are inefficient for large », requiring approximately »
passes through a list of » elements. More efficient algorithms can be devised using
a “divide-and-conquer” approach, which is used in both the sorting algorithms that
follow.

Mergesort

Here is a recursive description of how mergesort works:

Recursive Sorts: Mergesort and Quicksort 313

If there is more than one element in the array
Break the array into two halves.
Mergesort the left half.
Mergesort the right half.
Merge the two subarrays into a sorted array.

The main
Mergesort uses a merge method to merge two sorted pieces of an array into a single disadvantage of
sorted array. For example, suppose array a[0] ... a[n-1] issuch thata(0] ... alk] is | mergesort is that it
sorted and a[k+1] ... a[n-1] is sorted, both parts in increasing order. Example: uses a temporary
array.

al0] alt] afl2] al3] al4] al5]
2 5 8 9 1 6

In this case, a[0] ...a[3] and a[4] ...a[5] are the two sorted pieces. The method call
merge(a,0,3,5) should produce the “merged” array:

a[0] afl1] af2] al3] al[4] a[5]
1 2 5 6 8 9

The middle numerical parameter in merge (the 3 in this case) represents the index
of the last element in the first “piece” of the array. The first and third numerical
parameters are the lowest and highest index, respectively, of array a.

Here’s what happens in mergesort:

1. Start with an unsorted list of 7 elements.

2. The recursive calls break the list into 7 sublists, each of length 1. Note that
these » arrays, each containing just one element, are sorted!

3. Recursively merge adjacent pairs of lists. There are then approximately 7 /2
lists of length 2; then, approximately /4 lists of approximate length 4, and so
on, until there is just one list of length n.

An example of mergesort follows:

5 -3 2 4 0 6
Break list into 5 =3 2 4 0 6
n sublists of
length 1 5 3 P 4 0 6
5 -3 2 4 0 6

Merge adjacent
pairs of lists

314

Optional topic

The main
disadvantage of
quicksort is that its
WOrst case
behavior is very
inefficient.

Chapter 8 Sorting and Searching

Analysis of Mergesort:

1. The major disadvantage of mergesort is that it needs a temporary array that is
as large as the original array to be sorted. This could be a problem if space is a
factor.

2. Mergesort is not affected by the initial ordering of the elements. Thus, best,
worst, and average cases have similar run times.

Quicksort

For large n, quicksort is, on average, the fastest known sorting algorithm. Here is a
recursive description of how quicksort works:

If there are at least two elements in the array
Partition the array.
Quicksort the left subarray.
Quicksort the right subarray.

The partition method splits the array into two subarrays as follows: a pivot cle-
ment is chosen at random from the array (often just the first element) and placed so
that all items to the left of the pivot are less than or equal to the pivot, whereas those
to the right are greater than or equal to it.

For example, if the array is 4, 1, 2, 7, 5, —1, 8, 0, 6, and a[0] = 4 is the pivot, the
partition method produces

-1 1 2 0 5 8 7 6

Here’s how the partitioning works: Let a[01, 4 in this case, be the pivot. Markers
up and down are initialized to index values 0 and 7 — 1, as shown. Move the up marker
until a value less than the pivot is found, or down equals up. Move the down marker until
a value greater than the pivot is found, or down equals up. Swap a(up] and a[down].
Continue the process until down equals up. This is the pivot position. Swap a[0] and

a[pivotPosition].
down up
> - - —
1 2 7 5 -1 8 0 6
down up
el s o) %6
down up
1 2 0 -1 5 8 7 6

-1 1

LA]
o
(]
wn
o
~J
o

Notice that the pivot element, 4, is in its final sorted position.

Analysis of Quicksort:

1. For the fastest run time, the array should be partitioned into two parts of
roughly the same size.

Sorting Algorithms in Java

2. If the pivot happens to be the smallest or largest element in the array, the split is
not much of a split—one of the subarrays is empty! If this happens repeatedly,
quicksort degenerates into a slow, recursive version of selection sort and is very
inefficient.

3. The worst case for quicksort occurs when the partitioning algorithm repeat-
edly divides the array into pieces of size 1 and #» — 1. An example is when the
array is initially sorted in either order and the first or last element is chosen
as the pivot. Some algorithms avoid this situation by initially shuffling up the
given array (!) or selecting the pivot by examining several elements of the array
(such as first, middle, and last) and then taking the median.

NOTE

For both quicksort and mergesort, when a subarray gets down to some small size m,
it becomes faster to sort by straight insertion. The optimal value of m is machine-
dependent, but it’s approximately equal to 7.

SORTING ALGORITHMS IN JAVA

Unlike the container classes like ArrayList, whose elements must be objects, arrays
can hold either objects or primitive types like int or double.

A common way of organizing code for sorting arrays is to create a sorter class with
an array private instance variable. The class holds all the methods for a given type
of sorting algorithm, and the constructor assigns the user’s array to the private array
variable.

Example

Selection sort for an array of int.

/* A class that sorts an array of ints from
* largest to smallest using selection sort. */

public class SelectionSort
{

private int[] a;

//constructor
public SelectionSort(int[] arr)
{a=arr; }

//Swap al[i] and a[j] in array a.
private void swap(int i, int j)

{
int temp = ali];
alil = aljl;
alj] = temp;

(continued)

315

316

Only Comparable
objects can be sorted.

Binary search works
only if the array is
sorted on the search
key.

Chapter 8 Sorting and Searching

//Sort array a from largest to smallest using selection sort.
//Precondition: a is an array of ints.
public void selectionSort()

{
int maxPos, max;
for (int i = 0; i < a.length = 1; i++)
{
//find max element in a[i+1] to ala.length-1]
max = al[il;
maxPos = 1i;
for (int j = i + 1; j < a.length; j++)
if (max < aljl)
{
max = aljl;
maxPos = j;
}
swap(i, maxPos); //swap a[i] and a[maxPos]
¥
}

Note that in order to sort objects, the elements must be Comparable since you need
to be able to compare them.

SEQUENTIAL SEARCH

Assume that you are searching for a key in a list of 7 elements. A sequential search
starts at the first element and compares the key to each element in turn until the key
is found or there are no more elements to examine in the list. If the list is sorted,
in ascending order, say, stop searching as soon as the key is less than the current list
element.

Analysis:

1. The best case has key in the first slot.

2. The worst case occurs if the key is in the last slot or not in the list. In the worst
case, all 7 elements must be examined.

3. On average, there will be 7/2 comparisons.

BINARY SEARCH

If the elements are in a sorted array, a divide-and-conquer approach provides a much
more efficient searching algorithm. The following recursive pseudo-code algorithm
shows how the binary search works.

Assume that a[low] ... alhigh] is sorted in ascending order and that a method
binSearch returns the index of key. If key is not in the array, it returns —1.

Binary Search

if (low > high) //Base case. No elements left in array.

return -1;
else
{
mid = (low + high)/2;
if (key isequalto a[mid]) //found the key
return mid;
else if (key islessthan almid]) //key in left half of array
< binSearch for keyin allow] to almid-1] >
else //key in right half of array
< binSearch forkeyin a(mid+1] to alhigh] >
}
NOTE

When 1ow and high cross, there are no more elements to examine, and key is not in
the array.
Example: suppose 5 is the key to be found in the following array:

alo] a[1] a{2] al3] al4] al5) a[6] al7] al8]
1 4 5 7 9 12 15 2 .21

.
.
.

. .

....

ooooo
"""""
......

First pass: mid = (8+0)/2 = 4. Check a[4].
Second pass: mid = (0+3)/2 Check a[1].
Third pass: mid = (2+3)/2 = 2. Check a[2]. Yes! Key is found.

]
=

Analysis of Binary Search:

1. In the best case, the key is found on the first try (i.e., (Low + high)/2 is the
index of key.)

2. In the worst case, the key is not in the list or is at either end of a sublist.
Here the 7 elements must be divided by 2 until there is just one element, and
then that last element must be tested. An easy way to find the number of
comparisons in the worst case is to round 7 up to the next power of 2 and take
the exponent. For example, in the array above, 7 = 9. Suppose 21 were the key.
Round 9 up to 16, which equals 2*. Thus you would need four comparisons to
find it. Try it!

You should not memorize any sorting code. You must, however, be familiar with
the mechanism used in each of the sorting algorithms. For example, you should be
able to explain how the merge method of mergesort works, or what the purpose of the
pivot element in quicksort is. You should know the best and worst case situations for
cach of the sorting algorithms.

Be familiar with the sequential and binary search algorithms. You should know that
a binary search is more efficient than a sequential search, and that a binary search can
only be used for an array that is sorted on the search key.

317

