Recursion

recursion 7. See recursion.

—Eric . Raymond, The New Hacker’s Dictionary (1991)

Chapter Goals
e Recursive methods e Recursive helper methods
e Recursion in two-dimensional e Analysis of recursive algorithms

grids

RECURSIVE METHODS

A recursive method is a method that calls itself. For example, here is a program that
calls a recursive method stackWords.

public class WordPlay

{
public static void stackWords()
{
String word = I0.readString(); //read user input
if (word.equals("."))
System.out.println();
else
stackWords() ;
System.out.println(word);
}
public static void main(String args[])
{
System.out.println("Enter list of words, one per line.");
System.out.println("Final word should be a period (.)");
stackWords () ;
}
}

Here is the output if you enter

hold

my
hand

277

278 Chapter 7 Recursion

You get

hand
my
hold

The program reads in a list of words terminated with a period, and prints the list in
reverse order, starting with the period. How does this happen?

Each time the recursive call to stackWords() is made, execution goes back to the
start of a new method call. The computer must remember to complete all the pending
calls to the method. It does this by stacking the statements that must still be executed
as follows: The first time stackWords() is called, the word "hold" is read and tested for
being a period. No it’s not, so stackWords () is called again. The statement to output
“hold" (which has not yet been executed) goes on a stack, and execution goes to the
start of the method. The word "my" is read. No, it’s not a period, so the command to
output "my" goes on the stack. And so on. The stack looks something like this before
the recursive call in which the period is read:

System.out.println{"hand");

System.out.println("my");
System.out.println("hold");

Imagine that these statements are stacked like plates. In the final stackWords () call,
word has the value ".". Yes, it is a period, so the stackWords() line is skipped, the
period is printed on the screen, and the method call terminates. The computer now
completes each of the prevxous method calls in turn by “popping” the statements off
the top of the stack. It prints "hand”, then "my", then "hold", and execution of methed
stackWords () is complete.!

NOTE

1. Each time stackWords() is called, a new local variable word is created.

2. The first time the method actually terminates, the program returns to complete
the most recently invoked previous call. That’s why the words get reversed in
this example.

KR AR R AT

GENERAL FORM 0|= SIMPLE necunswE METHODS o

Every recursive method has two distinct parts:

e A base case or termination condition that causes the method to end.

e A nonbase case whose actions move the algorithm toward the base case and ter-
mination.

! Actually, the computer stacks the pending statements in a recursive method call more cfficiently than
the way described. But conceptually this is how it is done.

280

A recursive method
must have a base case.

Chapter 7 Recursion

Example 2

//Illustrates infinite recursion.
public void catastrophe(int n)
{
System.out.println(n) ;
catastrophe(n);

}

Try running the case catastrophe (1) if you have lots of time to waste!

WRITING RECURSIVE METHODS

To come up with a recursive algorithm, you have to be able to frame a process re-
cursively (i.e., in terms of a simpler case of itself). This is different from framing it
iteratively, which repeats a process until a final condition is met. A good strategy for
writing recursive methods is to first state the algorithm recursively in words.

Example 1

Write a method that returns n! (n factorial).

n! defined iteratively n! defined recursively

ol=1 ol=1
=1 1= (1))
21=(2)(1) 21=(2)(1!)
31=(3)(2)(1) 31=(3)(2!)
The general recursive definition for 2! is
1 n=0

nl=
n(n—1)! n>0

The definition seems to be circular until you realize that if 0! is defined, all higher fac-
torials are defined. Code for the recursive method follows directly from the recursive
definition:

/* Compute n! recursively.

* Precondition: n >= 0.

* Postcondition: returns n! */
public static int factorial(int n)

{
if (n == 0) //base case
return 1;
else
return n * factorial(n - 1);
¥
Example 2

Write a recursive method revDigs that outputs its integer parameter with the digits
reversed. For example,

General Form of Simple Recursive Methods 279

Here is the framework for a simple recursive methed that has no specific return
type.

public void recursiveMeth(...)
{
if (base case)
< Perform some action >
else
{

< Perform some other action >
recursiveMeth(...); //recursive method call

}

The base case typically occurs for the simplest case of the problem, such as when an
integer has a value of 0 or 1. Other examples of base cases are when some key is found,
or an end-of-file is reached. A recursive algorithm can have more than one base case.

In the else or nonbase case of the framework shown, the code fragment < Perform
some other action > and the method call recursiveMeth can sometimes be interchanged
without altering the net effect of the algorithm. Be careful though, because what does
change is the order of executing statements. This can sometimes be disastrous. (See the
eraseBlob example on p. 286.)

Example 1
public void drawLine(int n)
{
if (n == 0)
System.out.println("That’s all, folks!");
else
{
for (int i = 1; 1 <= n; i++)
System.out.print("*");
System.out.println();
drawLine(n - 1);
}
}

The method call drawLine(3) produces this output:

Aok ok
Ak
*

That’s all, folks!

NOTE

1. A method that has no pending statements following the recursive call is an
example of tail recursion. Method dravLine is such a case, but stackWords is
not.

2. The base case in the drauLine example isn == 0. Notice that each subsequent
call, dravLine(n - 1), makes progress toward termination of the method. If
your method has no base case, or if you never reach the base case, you will
create infinite recursion. This is a catastrophic error that will cause your com-
puter eventually to run out of memory and give you heart-stopping messages
like java.lang.StackOverflowError ...

282

Chapter 7 Recursion

In general, each call to £ib makes two more calls, which is the tipoff for an expo-
nential algorithm (i.e., one that is very inefficient). This is much slower than the run
time of the corresponding iterative algorithm (see Chapter 5, Question 13).

You may ask: Since every recursive algorithm can be written iteratively, when
should one use recursion? Bear in mind that recursive algorithms can incur extra run
time and memory. Their major plus is elegance and simplicity of code.

General Rules for Recursion

Avoid recursion for algorithms that involve large local

arrays—too many recursive calls can cause memory over-

flow.

2. Use recursion when it significantly simplifies code.

3. Avoid recursion for simple iterative methods like factorial,
Fibonacci, and the linear search on the next page.

4. Recursion is especially useful for

[
.

o Branching processes like traversing trees or directo-
ries.

e Divide-and-conquer algorithms like mergesort and
binary search.

A common technique in designing recursive algorithms is to have a public nonrecur-
sive driver method that calls a private recursive helper method to carry out the task.
The main reasons for doing this are

e To hide the implementation details of the recursion from the user.

e To enhance the efficiency of the program.

Analysis of Recursive Methods

revDigs(147) outputs 741
revDigs(4) outputs 4

First, describe the process recursively: Output the rightmost digit. Then, if there are
still digits left in the remaining number n/10, reverse its digits. Repeat this until n/10
is 0. Here is the method:

/* Precondition: n >= Q.
* Postcondition: Outputs n with digits reversed. */
public static void revDigs(int n)

{
System.out.print(n % 10); //rightmost digit
if (n / 10 1= 0) //base case
revDigs(n / 10);
}

Recall the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, The nth Fibonacci number equals
the sum of the previous two numbers if » > 3. Recurswely,

n=1,2

Fib(n) = {F ib(n — 1)+ Fib(n —2), n>3

Here is the method:

/* Precondition: n >= 1.
* Postcondition: Returns the nth Fibonacci number. */
public static int fib{int n)

{
if (n==1 || n==2)
return 1;
else
return fib(n - 1) + fib(n - 2);
}

Notice that there are two recursive calls in the last line of the method. So to find Fib(5),
for example, takes eight recursive calls to £ib!

Fib(5)

Fib(4) Fib(3)
/7 '\ 7\
Fib(3) Fib(2) Fib(2) Fib(1)
7 N\
Fib(2) Fib(1)

281

284 Chapter 7 Recursion

The solution can be stated recursively as follows:
o If the key is in a[0], then the key is found.
e If not, recursively search the array starting at a[1].

o If you are past the end of the array, then the key wasn’t found.
Here is a straightforward (but inefficient) implementation:

public class Searcher
{
/* Recursively search array a for key.
* Postcondition: If alk) equals key for 0 <= k < a.length
* returns true, otherwise returns false. */
public boolean search(Comparable[] a, Comparable key)
{
if (a.length == 0) //base case. key not found
return false;
else if (a[0].compareTo(key) == 0) //base case
return true; //key found
else
{
Comparable[] shorter = new Comparablefa.length-1];
for (int i = 0; i < shorter.length; i++)
shorter[i] = ali+1];
return search(shorter, key);

}

public static void main(String[] args)
{
String[] list = {"Mary", "Joe", "Lee", "Jake"};
Searcher s = new Searcher(};
System.out.println("Enter key: Mary, Joe, Lee or Jake.");
String key = I0.readString(); //read user input
boolean result = s.search(list, key);
if (lresult)
System.out.printin(key + " was not found.");
else
System.out.println(key + " was found.");

}

Notice how horribly inefficient the search method is: For each recursive call, a new
array shorter has to be created! It is much better to use a parameter, startIndex, to
keep track of where you are in the array. Replace the search method above with the
following one, which calls the private helper method recursearch:

/* Driver method. Searches array a for key.
* Precondition: a contains at least one element.
* Postcondition: If alk] equals key for 0 <= k < a.length
* returns true, otherwise returns false. */
public boolean search(Comparable(] a, Comparable key)
{

return recurSearch(a, 0, key);

}

Recursive Helper Methods

Example 1

Consider the simple example of recursively finding the sum of the first # positive
integers.

//Returns 1 + 2 + 3 + ... + n.
public static int sum(int n)
{
if (n == 1)
return 1;
else

return n + sum(n - 1);

3

Notice that you get infinite recursion if » < 0. Suppose you want to include a test
for # > 0 before you execute the algorithm. Placing this test in the recursive method
is inefficient because if # is initially positive, it will remain positive in subsequent
recursive calls. You can avoid this problem by using a driver method called getSun,
which does the test on 7 just once. The recursive method sum becomes a private helper
method.

public class FindSum
{
/* Private recursive helper method.
* Finds 1 + 2+ 3 + .., +n.
* Precondition: n > 0. %/
private static int sum(int n)
{
if (n == 1)
return 1;
else
return n + sum(n - 1);

}

/* Driver method */
public static int getSum(int n)
{
if (a > 0)
return sum(n);
else
{
throw new IllegalArgumentException
("Error: n must be positive");

}

NOTE

This is a trivial method used to illustrate a private recursive helper method. In practice,
you would never use recursion to find a simple sum!

Example 2

Consider a recursive solution to the problem of doing a sequential search for a key
in an array of elements that are Comparable. If the key is found, the method returns
true, otherwise it returns false.

286

Chapter 7 Recursion

Example

On the right is an image represented as a square grid
of black and white cells. Two cells in an image are part
of the same “blob” if each is black and there is a sequence
of moves from one cell to the other, where each move is
either horizontal or vertical to an adjacent black cell. For
example, the diagram represents an image that contains
two blobs, one of them consisting of a single cell.

Assuming the following Image class declaration, you

are to write the body of the eraseBlob method, using a

recursive algorithm.

public class Image

{
private final int BLACK = 1;
private final int WHITE = 0;
private int[][] image; //square grid
private int size; //number of rows and columns

public Image() //comstructor
{ /* implementation not shown */ }

public void display() //displays Image
{ /* implementation not shown */ }

/* Precondition: Image is defined with either BLACK or WHITE
cells.

* Postcondition: If 0 <= row < size, 0 <= col < size,
* and image[row] [col] is BLACK, set all cells
* in the same blob to WHITE. Otherwise image
* is unchanged. */

public void eraseBlob(int row, int col)

/* your code goes here */

}

Solution:

public void eraseBlob(int row, int col)

{
if (row >= 0 && row < size &% col >= 0 && col < size)
if (image([row] [col] == BLACK)
{
image [row] [col] = WHITE;
eraseBlob(row - 1, col);
eraseBlob(row + 1, col);
eraseBlob(row, col - 1);
eraseBlob(row, col + 1);
}
}
NOTE

1. The ordering of the four recursive calls is irrelevant.

Recursion in Two-Dimensional Grids 285

/* Recursively search array a for key, starting at startlIndex.
* Precondition: a contains at least one element and

* 0 <= startIndex <= a.length.
* Postcondition: If al[k] equals key for 0 <= k < a.length
* returns true, otherwise returns false. */

private boolean recurSearch(Comparable[] a, int startIndex,
Comparable key)

{
if (startIndex == a.length) //base case. key not found
return false;
else if(a[startIndex].compareTo(key) == 0) //base case
return true; //key found
else
return recurSearch(a, startIndex+l, key);
¥
NOTE

1. Using the parameter startIndex avoids having to create a new array object for

each recursive call. Making startIndex a parameter of a helper method hides Use a recursive helper

implementation details from the user. R
private coding details

2. Since String implements Comparable, it is OK to use an array of String. It SRR

would also have been OK to test with an array of Integer or Double, since
they too implement Comparable.

3. The helper method is private because it is called only by search within the
Searcher class.

4. It’s easy to modify the search method to return the index in the array where
the key is found: Make the return type int and return startIndex if the key is
found, -1 (say) if it isn’t.

RECURSION IN TWO-DIMENSIONAL GRIDS

A certain type of problem crops up occasionally on the AP exam: using recursion to
traverse a two-dimensional array. The problem comes in several different guises, for

example,

1. A game board from which you must remove picces.
2. A maze with walls and paths from which you must try to escape.
3. White “containers” enclosed by black “walls” into which you must “pour paint.”

In cach case, you will be given a starting position (row, col) and instructions on
what to do. The recursive solution typically involves these steps:

Check that the starting position is not ont of range:
If (starting position satisfies some requirement)
Perform some action to solve problem
RecursiveCallfrow + 1, col)
RecursiveCallfrow — 1, col)
RecursiveCallfromw, col + 1)
RecursiveCallfrow, col — 1)

288

Chapter 7 Recursion

public class ColorGrid

{

private String[] (] myPixels;
private int myRows;
private int myCols;

/*x
* Creates numRows X numCols ColorGrid from String s.
* Qparam s the string containing colors of the ColorGrid
* Qparam numRows the number of rows in the ColorGrid
* Qparam numCols the number of columns in the ColorGrid
*/

public ColorGrid(String s, int numRows, int numCols)

{ /* to be implemented in part (a) */ }

Vel

* Precondition: myPixels[row][col] is oldColor, ome of "r",
* "b","g", or "}'“-

»* newColor is onme of "r","b","g", or "y".

* Postcondition: if 0 <= row < myRows and 0 <= col < myCols,
* paints the connected region of

* myPixels[row] [col] the newColor.

* Does nothing if oldColor is the same as

* newColor.

* Qparam row the given row
»* @param col the given column
* Qparam newColor the new color for painting
* Qparam oldColor the current color of myPixels[row] (col]
*/
public void paintRegion(int row, int col, String newColor,
String oldColor)
{ /* to be implemented in part (b) */ }

//other methods not shown

(a) Write the implementation code for the ColorGrid constructor. The constructor

should initialize the myPixels matrix of the ColorGrid as follows: The dimen-
sions of myPixels are numRows X numCols. String s contains numRows X numCols
characters, where each character is one of the colors of the grid—"z", "g", "b", or
y". The characters are contained in s row by row from top to bottom and
left to right. For example, given that numRows is 3, and numCols is 4, if s is
"brrygrggyyyr", myPixels should be initialized to be

Recursion in Two-Dimensional Grids

2. The test
if (imagel[row] [col]l == BLACK)

can be included as the last piece of the test in the first line:

if (row >= 0 && ...

If row or col is out of range, the test will short-circuit, avoiding the dreaded
ArrayIndexOutOfBoundsException.
3. If you put the statement

image [row] [col] = WHITE;

after the four recursive calls, you get infinite recursion if your blob has more
than one cell. This is because, when you visit an adjacent cell, one of its recur-
sive calls visits the original cell. If this cell is still BLACK, yet more recursive calls
are generated, ad infinitum.

A final thought: Recursive algorithms can be tricky. Try to state the solution recur-
sively in words before you launch into code. Oh, and don’t forget the base case!

Sample Free-Response Question 1

Here is a sample free-response question that uses recursion in a two-dimensional array.
See if you can answer it before looking at the solution.

A color grid is defined as a two-dimensional array whose elements are character
strings having values "b* (blue), "r" (red), "g" (green), or "y" (yellow). The elements
are called pixels because they represent pixel locations on a computer screen. For
example,

Yegr
bbgr rerrr by g
grgr grb
bbg

A connected region for any pixel is the set of all pixels of the same color that can be
reached through a direct path along horizontal or vertical moves starting at that pixel.
A connected region can consist of just a single pixel or the entire color grid. For
example, if the two-dimensional array is called pixels, the connected region for pix-
els[1] [0] is as shown here for three different arrays.

& 8
b g,

The class ColorGrid, whose declaration is shown below, is used for storing, displaying,
and changing the colors in a color grid.

287

290 Chapter 7 Recursion

Solution
(a) public ColorGrid(String s, int numRows, int numCols)
{
myRows = numRows;
myCols = numCols;
myPixels = new String [numRows) [numCols] ;
int stringIndex = 0;
for (int r = 0; r < numRows; r++)
for (int ¢ = 0; ¢ < numCols; c++)
{
myPixels([r] [c] = 8.substring(stringIndex,
stringIndex + 1);
stringlndex++;
}
}

(b) public void paintRegion(int row, imt col, String newColor,
String oldColor)

{ .
if (row >= O && row < myRows && col >= 0 &% col < myCols)
if (!myPixels[row][col].equals(newColor) &%
myPixels [row] [col] .equals(oldColor))
{
myPixels[row) [col] = newColor;
paintRegion(rov + 1, col, neuColor, oldColor);
paintRegion(row - 1, col, newColor, o0ldColor);
paintRegion(row, col + 1, newColor, oldColor) ;
paintRegion(row, col - 1, newColor, oldColor);
}
}
NOTE

e In part (a), you don’t need to test if stringIndex is in range: The precondition
states that the number of characters in s is numRows X numCols.

e In part (b), each recursive call must test whether row and col are in the correct
range for the myPixels array; otherwise, your algorithm may sail right off the
edge!

o Don'’t forget to test if newColor is different from that of the starting pixel.
Method paintRégion does nothing if the colors are the same.

e Also, don’t forget to test if the current pixel is oldColor—you don’t want to
overwrite all the colors, just the connected region of oldColor!

e The color-change assignment myPixels [row] [col] = newColor must precede
the recursive calls to avoid infinite recursion.

Sample Free-Response Question 2

Here is another sample free-response question that uses recursion.

This question refers to the Sentence class below. Note: A word is a string of con-
secutive nonblank (and nonwhitespace) characters. For example, the sentence

Recursion in Two-Dimensional Grids 289

(b)

Complete the constructor below:

[**
* Creates numRows X numCols ColorGrid from String s.

* Qparam s the string containing colors of the ColorGrid
* Q@param numRows the number of rows in the ColorGrid

* @param numCols the number of columns in the ColorGrid
*/

public ColorGrid(String s, int numRows, int numCols)

Write the implementation of the paintRegion method as started below. Note:
You must write a recursive solution. The paintRegion paints the connected
region of the given pixel, specified by row and col, a different color specified
by the newColor parameter. If newColor is the same as oldColor, the color of
the given pixel, paintRegion does nothing. To visualize what paintRegion does,
imagine that the different colors surrounding the connected region of a given
pixel form a boundary. When paint is poured onto the given pixel, the new color
will fill the connected region up to the boundary.

For example, the effect of the method call c.paintRegion(2, 3, "b", "r") on
the ColorGrid c is shown here. (The starting pixel is shown in a frame, and its
connected region is shaded.)

before after
rrb g yy rrbgyy
brb y @ brbybb
ggr[x]rb ggbbbb
yigs y b ybbybb

Complete the method paintRegion below. Note: Only a recursive solution
will be accepted.

J®*

*
*
*
*
*
*
*
*
*
*
*
*

*/

Precondition:

Postcondition:

myPixels[row] [col] is oldColor, one of "r",
rlbll 'IPEH . or llyll.

newColor is one of "r","b","g", or ey AT

if 0 <= row < myRows and 0 <= col < myCols,
paints the connected region of
myPixels[row] [col] the newColor.

Does nothing if oldColor is the same as
newColor.

@param row the given row

@param col the given column

@param newColor the new color for painting
@Oparam oldColor the current color of myPixels[row] [col]

public void paintRegion(int row, int col, String newColor,
String oldColor)

292

Chapter 7 Recursion

Complete the constructor below:

/x*
* Constructor. Creates sentence from String str.
* Finds the number of words in sentence.

» Precondition: Words in str separated by exactly one blank.
* @param str the string containing a sentence
*/

public Sentence(String str)

{

mySentence = BLI;

(b) Consider the problem of testing whether a string is a palindrome. A palindrome
reads the same from left to right and right to left, ignoring spaces, punctuation,
and capitalization. For example,

A Santa lived as a devil at NASA.
Flo, gin is a sin! I golf.
Eva, can I stab bats in a cave?

A public method isPalindrone is added to the Sentence class. Here s the method
and its implementation:

/xx
+ Qreturn true if mySentence is a palindrome, false otherwise
*/
public boolean isPalindrome()
{
String temp = removeBlanks (mySentence) ;
temp = removePunctuation(temp) ;
temp = lowerCase(temp);

return isPalindrome(temp, O, temp.length() - 1);
}

The overloaded isPalindrome method contained in the code is a private recursiv
hel.per metl}od, also added to the Sentence class. You are to write the impl ;
Lanobn of th1§ method. It takes a “purified” string as a parameter, namillmp eml:m.
; :ljes e;n stripped of blanks and punc.tuation and is all lowerca:se lett d or;et :
takes as parameters the first and last index of the strine. | o eheo
purified” string is a palindrome, false otherwise ing: t returns true if this

A recursive algorithm for testing if a string is 2 palindrome is as f
: is i
o If the string has length O or 1, it’s 2 palindrom s follows:
® Remove the first and last letters. «

o If those two letters are th
then the original string | ol ind che remaining string | i
ring is a palindrome. Othcrmsei;trmg I5a P&]Illdf ome,
1
/

Recursion in Two-Dimensional Grids

291

“Hello there!” she said.
consists of the four words

"Hello therag!" she said.

public class Sentence

{
private String mySentence;
private int myNumWords;

/=

* Constructor. Creates sentence from String str.
* Finds the number of words in sentence.
* Precondition: Words in str separated by exactly one blank.
* Qparam str the string containing a sentence
*/
Public Sentence(String str)
{ /* to be implemented in part (a) =/ }

public int getNumWords()
{ return myNumWords; }

public String getSentence()
{ return mySentence; }

/%
* Qparam s the specified string
* Qreturn a copy of String s with all blanks removed
* Postcondition: Returned string contains just ome word.
*/
pPrivate static String removeBlanks(String s)
{ /* implementation not shown */ }

/x%
* Qparam s the specified string
* @return a copy of String s with all letters in lowercase
* Postcondition: Number of words in returned string equals
* number of words in s.
*/ .)
private static String lowerCase(S;rlng 8
{ /* implementation not shown */

[*%) .
cified string . d
x Qparam s the SPef String s with all punctuation remove1
* Oreturn a copy © words in returned string equals

cad . umber of
* Postcondition ﬁumber of words in s.

*

. ic String removePunctuation(String s)
ic

rivate stat . necs
; '« implementation ot shovn

| low. The constructor 25587

Recursion in Two-Dimensional Grids 293

Complete the isPalindrome method below:

/* Private recursive helper method that tests whether a substring
* of string s is a palindrome.

* Qparam s the given string

* @param start the index of the first character of the substring
* Q@param end the index of the last character of the substring
* Precondition: s contains no spaces, punctuation, or capitals.
* @return true if the substring is a palindrome, false otherwise
*/

private static boolean isPalindrome(String s, int start, int end)

Solution

(a) public Sentence(String str)

mySentence = str;

myNumWords = 1;

int k = str.index0f(" ");

while (k != -1) //while there are still blanks in str

{
myNumWords++;
str = str.substring(k + 1); //substring after blank
k = str.indexDf(" "); //get index of next blank
}
}
(b) private static boolean isPalindrome(String s, int start,
int end)
{
if (start >= end) //substring has length O or 1
return true;
else
{
String first = s.substring(start, start + 1);
String last = s.substring(end, end + 1);
if (first.equals(last))
return isPalindrome(s, start + 1, end - 1);
else
return false;
}
}
NOTE

o In part (a), for every occurrence of a blank in mySentence, myNumWords must be
incremented. (Be sure to initialize myNunWords to 1!)

o In part (a), the code locates all the blanks in mySentence by replacing str with
the substring that consists of the piece of str directly following the most re-
cently located blank.

o Recall that index0f returns -1 if its String parameter does not occur as a sub-
string in its String calling object.

e In part (b), the start and end indexes move toward each other with each sub-
sequent recursive call. This shortens the string to be tested in each call. When
start and end meet, the base case has been reached.

294 Chapter 7 Recursion

e Notice the private static methods in the Sentence class, including the helper
method you were asked to write. They are static because they are not invoked
by a Sentence object (no dot member construct). The only use of these meth-
ods is to help achieve the postconditions of other methods in the class.

On the AP exam you will be expected to calculate the results of recursive method
calls. Recursion becomes second nature when you practice a lot of examples. For the
more difficult questions, use box diagrams to untangle the statements.

You should understand that recursive algorithms can be very inefficient.

