
Program Design and

Analysis

CHAPTER 5

198

Weeks ofcoding can save you hours 0/planning.
—Anonymous

Chapter Goals

• Program development, • Relationships between classes
including design and testing . Program analysis

• Object-oriented program design a Efficiency

Students of introductory computer science typically see themselves as program
mers. They no sooner have a new programming project in their heads than

they're at thecomputer, typing madly to get some code up and running. (Is this you?)
To succeed as a programmer, however, you have to combine the practical skills of a

software engineer with theanalytical mindset of acomputer scientist. Asoftware engi
neer oversees the life cycle ofsoftware development: initiation of the project, analysis
ofthespecification, and design of the program, as well as implementation, testing, and
maintenance of the final product. A computer scientist (among other things!) ana
lyzes the implementation, correctness, and efficiency ot algorithms. All these topics
are tested on the A PCS exam.

THE SOFTWARE DEVELOPMENT LIFE CYCLE

The Waterfall Model

The waterfall model of software development came about in the 1960s in order to
bringstructureandefficiency into the process of creating large programs.

Each step in the process flows intothe next: Thepicture resembles a waterfall.



The Software Development Life Cycle

Analysis of the
Specification

Program Design

Implementation

Testing & Debugging

Maintenance

Program Specification

Thespecification isa written description of the project. Typically it isbased on a cus
tomer's requirements. The first step in writing a program is to analyze the specifi
cation, make sure you understand it, and clarify with the customer anything that is
unclear.

Program Design

Even forasmall-scale program agood design can save programming time and enhance
the reliability ofthe final program. The design is a fairly detailed plan for solving the
problem outlined in thespecification. It should include all objects thatwill be used in
the solution, the data structures that will implement them, plus a detailed list of the
tasks to beperformed bytheprogram.

Agood design provides a fairly detailed overall plan ata glance, without including
the minutiae ofJavacode.

Program Implementation

Program implementation is the coding phase. Design and implementation are dis
cussed in more detail on p. 201.

Testing and Debugging

TEST DATA

Not every possible input value can be tested, so a programmer should be diligent in
selecting a representative set oftest data. Typical values ineach partofadomain ofthe
program should be selected, as well as endpoint values and out-of-range values. Ifonly
positive input is required, your test data should include a negative value just to check
that yourprogram handles it appropriately.

199



200 Chapters Program Design and Analysis

Example

Aprogram must be written to insert avalue into its correct position in this sorted
list:

2 5 9

Test data should include

• A value less than 2

• A value between 2 and 5

• A value between 5 and 9

• A value greater than9

• 2,5, and 9

• A negative value

TYPES OF ERRORS (BUGS)

• Acompik-time error occurs during compilation of the program. The compiler
is unable to translate the program into bytecode and prints an appropriate er
ror message. A syntax error is a compile-time error caused by violating the
rules of the programming language. Some examples are omitting semicolons
or braces, using undeclared identifiers, using keywords inappropriately, having
parameters that don't match in type and number, and invoking a method for an
object whose class definition doesn't contain thatmethod.

• A runtime error occurs during execution of the program. TheJava run-time
environment throws an exception, which means that itstops execution and prints
an error message. Typical causes ofrun-time errors include attempting todivide
an integer by zero, using an array index that is out of bounds, attempting to
open a file that cannot be found, and soon. An error that causes a program to
run forever ("infinite loop") can also be regarded as a run-time error. (See also
Errors and Exceptions, p. 68.)

• An intent or logic error is one that fails to carry out the specification of the
program. The program compiles and runs but does not do the job. These are
sometimes the hardest types oferrors to fix.

ROBUSTNESS

Always assume that any user ofyour program is not as smart as you are. You must
therefore aim to write a robust program, namely onethat

• Won't give inaccurate answers forsome inputdata.

• Won't crash if the input data are invalid.

• Won't allow execution to proceed ifinvalid data are entered.

Examples ofbad input data include out-of-range numbers, characters instead ofnumer
ical data, and a response of"maybe" when "yes" or "no" was asked for.

Note that bad input data that invalidates a computation won't be detected by Java.
Your program should include code that catches the error, allows the error to be fixed,
and allows program executionto resume.



Object-Oriented Program Design 201

Program Maintenance

Program maintenance involves upgrading the code ascircumstances change. New fea
turesmay beadded. Newprogrammers may come on board. Tomake theirtaskeasier,
theoriginal program must have clear and precise documentation.

OBJECT-ORIENTED PROGRAM DESIGN

Object-oriented programming has been thedominant programming methodology since
the mid 1990s. It uses an approach that blurs the lines of the waterfall model. Anal
ysis of the problem, development of the design, and pieces of the implementation all
overlap and influence one another.

Herearethe steps in object-oriented design:

• Identifyclasses to be written.

• Identify behaviors (i.e., methods) for each class.

• Determine the relationships between classes.

• Write the interface (public method headers) foreach class.

• Implement the methods.

Identifying Classes

Identify the objects in the program by picking out the nouns in the program speci
fication. Ignore pronouns and nouns that refer to the user. Select those nouns that
seem suitable as classes, the "big-picture" nouns that describe the major objects in the
application. Some of the other nouns mayend up asattributesof the classes.

Many applications have similar object types: a low-level basic component; a collec
tion of low-level components; a controlling object that putseverything together; and
a display object that could bea GUI (graphical user interface) but doesn't have to be.

Example 1

Write a program that maintains an inventory of stockitems fora small store.

Nouns to consider: inventory, item,store.

Basic Object: Stockltem
Collection: Inventory (a list of Stockltems)
Controller: Store (hasan Inventory, uses a StoreDisplay)
Display: StoreDisplay (could be a GUI)

Example 2

Write a program that simulates a game of bingo. There should beat least twoplay
ers,each of whomhasa bingo card, and a caller who calls the numbers.

Nouns to consider: game, players, bingo card, caller.

Basic Objects: BingoCard, Caller
Collection: Players (each hasa BingoCard)
Controller: GameMaster (sets up the Players and Caller)
Display: BingoDisplay (shows each player's card anddisplays winners, etc.)



202 Chapters Program Design and Analysis

Example 3

Write a program that creates random bridge deals and displays them in a specified
format. (The specification defines a"deal" as consisting offour hands. It also describes
a deckof cards, and showshow each cardshould be displayed.)

Nouns to consider: deal, hand, format, deck, card.

Basic Object: Card
Collection: Deck (has anarrayofCards)

Hand (has anarrayofCards)
Deal (has anarrayof Hands)
Dealer (hasa Deck, or several Decks)

Controller: Formatter (hasa Deal and a TableDisplay)
Display: TableDisplay (could be a GUI)

Identifying Behaviors

Find all verbs intheprogram description thathelp lead to thesolution oftheprogram
ming task. These are likely behaviors that will probably become the methods of the
classes. Nowdecide which methods belong inwhich classes. Recall that the process of
bundling a group ofmethods and data fields intoaclass is called encapsulation.

Think carefully about who should do what. Do not ask a basic object to perform
operations for the group. For example, a Stockltem should keep track of its own
details (price, description, how many on the shelf, etc.) but should not be required
to search for another item. A Card should know its value and suit, but should not
be responsible for keeping track of how many cards are left in a deck. A Caller in a
bingo game should be responsible for keeping track of the numbers called so far and
forproducing thenext number, butnotfor checking whether aplayer has bingo: That
isthe jobof an individual player (element of Players) andhisBingoCard.

You will also need to decide which data fields each class will need and which data
structures should store them. Forexample, if an object represents a list of items, con
sideran arrayor ArrayList asthe datastructure.

Determining Relationships Between Classes

INHERITANCE RELATIONSHIPS

Look for classes with commonbehaviors. This willhelp identify inheritance relation
ships. Recall the is-a relationship—if object1 is-a object2, then object2 is a candidate
for a superclass.

COMPOSITION RELATIONSHIPS

Composition relationships are defined bythe has-a relationship. Forexample, a Nurse
has-a Uniform. Typically, if twoclasses have a composition relationship, oneof them
contains an instance variable whose type is the other class.

Note that a wrapper class always implements a has-a relationship with any objects
that it wraps.



Object-Oriented Program Design

UML Diagrams

An excellent way to keep track of the relationships between classes and show the in
heritance hierarchy in your programs is with a UML (Unified Modeling Language)
diagram. This is a standard graphical scheme used by object-oriented programmers.
Although it is not part of the AP subset, on the AP exam you may be expected to
interpretsimple UMLdiagrams and inheritance hierarchies.

Here isa simplified version of theUMLrules:

• Represent classes with rectangles.

• Use angle brackets with the word "abstract" or "interface" to indicate either an
abstract class or interface.

• Show the is-a relationship between classes with anopen up-arrow.

• Show the is-a relationship that involves an interface with an open, dotted up-
arrow.

• Show the has-a relationship with a down arrow or sideways arrow (indicates
composition).

Example

Comparable
«interface»

1

• Board

Player
«abstract» <
S \ ScoreCard

/

GoodPlayer BadPlayer

"

Tutor

Fromthisdiagram you cansee ataglance thatGoodPlayer andBadPlayer are subclasses
ofanabstract class Player,and thateach Playerimplements theComparable interface.
Every Player has a Board anda ScoreCard, while onlytheBadPlayer has a Tutor.

Implementing Classes

BOTTOM-UP DEVELOPMENT

For each method inaclass, list all ofthe other classes needed to implement that partic
ular method. These classes are called collaborators. A class that has no collaborators is
independent.

To implement the classes, often an incremental, bottom-up approach is used. This
means that independent classes are fully implemented and tested before being incorpo
rated into the overall project. Typically, these are thebasic objects oftheprogram, like
Stockltem, Card, and BingoCard. Unrelated classes in a programming project can be
implemented by different programmers.

203



204 Chapter 5 Program Design and Analysis

Note that a class can be tested using a dummy Tester class that will be discarded
when the methods of the class are working. Constructors, then methods, should be
added, andtested, oneat a time. Adriver class that contains amain method canbeused
totest the program as you go. The purpose ofthe driver is to test the class fully before
incorporating it asan object in a new class.

When each of the independent classes is working, classes that depend on just one
other class are implemented and tested, and so on. This may lead to a working, bare
bones version of the project. New features and enhancements can be added later.

Design flaws can be corrected ateach stage ofdevelopment. Remember, adesign is
never set in stone: It simply guides the implementation.

TOP-DOWN DEVELOPMENT

Ina top-down design, the programmer starts with anoverview ofthe program, select
ing the highest-level controlling object and thetasks needed. During development of
the program, subsidiary classes may be added to simplify existing classes.

Implementing Methods

PROCEDURAL ABSTRACTION

A good programmer avoids chunks of repeated code wherever possible. To this end,
ifseveral methods ina class require the same task, like asearch or aswap, you should
use helper methods. The reduce method inthe Rational class on p. 109 is an example
ofsuch amethod. Also, wherever possible you should enhance the readability ofyour
code by using helper methods to break long methods into smaller tasks. The use of
helper methods within a class is known as procedural abstraction and is an example of
top-down development within a class. This process ofbreaking a long method into a
sequence ofsmaller tasks issometimes called stepwise refinement.

INFORMATION HIDING

Instance variables and helper methods are generally declared as private, which pre
vents client classes from accessing them. This strategy iscalled information hiding.

STUB METHOD

Sometimes it makes more sense in thedevelopment ofaclass to test a calling method
before testing a method it invokes. A stub is a dummy method that stands in for a
method until the actual method has been written and tested. A stub typically has an
output statement to show that it was called in thecorrect place, or it may return some
reasonable values if necessary.

ALGORITHM

An algorithm is a precise step-by-step procedure that solves a problem or achieves a
goal. Don't write any code for an algorithm inamethod until the steps are completely
clear to you.

Example 1

Aprogram must test the validity ofafour-digit code number that aperson will enter
to beable to use a photocopy machine. Thenumber isvalid if the fourth digit equals
the remainder whenthe sumof the first threedigits isdivided byseven.



Object-Oriented Program Design 205

Classes in the program may include an IDNumber, the four-digit code; Display,
which would handle input and output; and IDMain, the driver for theprogram. The
data structure used to implement an IDNumber could be an instance variable of type
int, or aninstance variable oftype String, or four instance variables of type int—one
per digit,and so on.

Atop-down design for the program that tests the validity ofthe number is reflected
in thesteps of the main method of IDMain:

Create Display
Read in IDNumber

Check validity
Print message

Each method inthis design is tested before the next method is added tomain. Ifthe
display will be handled in aGUI (graphical user interface), stepwise refinement ofthe
design mightlook likethis:

Create Display

Construct a Display
Createwindowpanels
Setup text fields
Add panels andfields to window

Read inIDNumber

Prompt and read

Checkvalidityof IDNumber
Check input

Check characters

Check range
Separate into digits
Check validity property

Print message
Write number

State if valid

NOTE

1. The IDNumber class, which contains the four-digit code, is responsible for the
following operations:

Splitvalue into separate objects
Checkcondition for validity

The Display class, which contains objects to read and display, must also con
tain an IDNumber object. It is responsible for the following operations:

Setup display
Read in code number

Display validitymessage
Creating these two classes with theirdatafields andoperations (methods) isan
example of encapsulation.

2. The Display method readCodeNumber needs private helpermethods to check
the input: checkCharacters and checkRange. This is an example of procedu-



206

Use nouns in the

specification to
identify possible
classes.

Chapter 5 Program Design and Analysis

ral abstraction (use of helper methods) and information hiding (making them
private).

3. Initially the programmer had just an IDNumber class and a driver class. The
Display class was added as a refinement, when it was realized that handling
the input and message display was separate from checking the validity of the
IDNumber. This is an example of top-down development (adding an auxiliary
class to clarify the code).

4. The IDNumber class contains no data fields that are objects. It is therefore an in
dependent class. TheDisplay class, which contains an IDNumber data member,
has aComposition relationship with IDNumber (Display has-a IDNumber).

5. When testing the final program, the programmer should be sure to include
each of the following as a user-entered code number: a valid four-digit number,
an invalid four-digit number, an w-digit number, where n ^ 4, anda "number"
that contains a nondigit character. A robust program should be able to deal
with all these cases.

Example 2

Aprogram must create a teacher's grade book. Theprogram should maintain aclass
list ofstudents for any number of classes in the teacher's schedule. A menu should be
provided that allows the teacher to

• Create a new class of students.

• Enter a set of scores for any class.

• Correct anydata that's been entered.

• Display the recordof any student.

• Calculate the final average and grade for all students in a class.

• Print a class list,with or without grades.

• Add a student, delete a student, or transfer a student to another class.

• Save all the data in a file.

IDENTIFYING CLASSES

Use the nouns in the specification as a starting point for identifying classes in the
program. The nouns arc: program, teacher, grade book, class list, class, student,
schedule, menu, set of scores, data, record,average, grade, and file.

Eliminate each of the following:

program (Always eliminate "program" when used in this context.)
teacher (Eliminate, because he or she is the user.)
schedule (This will be reflected in the name of the external file for

each class, e.g., apcs_period3.dat.)
data, record (These are synonymous with student name, scores, grades,

etc.,and will becovered by these features.)
class (This is synonymous with class list.)

The following seem to be excellent candidates for classes: GradeBook, ClassList,
Student, andFileHandler. Other possibilities are Menu, ScoreList, andaGUI_Display.

On further thought: Basic independent objects areStudent, Menu, Score, and File-
Handler. Group objects are ClassList (collection of students), ScoreList (collection



Object-Oriented Program Design

of scores), and AllClasses (collection of ClassLists). The controlling class is the
GradeBook. A Display class is essential for many of the grade book operations, like
showing a class list or displaying information for a single student.

RELATIONSHIPS BETWEEN CLASSES

There are no inheritance relationships. There are many composition relationships
between objects, however. The GradeBook has-a Menu, the ClassList has-a Student
(several, in fact!), a Student has-a name, average, grade, list_of.scores, etc. The
programmer must decide whether to code these attributes as classes or data fields.

IDENTIFYING BEHAVIORS

Use the verbs in the specification to identify required operations in the program.
The verbs are: maintain <list>, provide <mcnu>, allow <user>, create <list>,
enter <scores>, correct <data>, display <rccord>, calculate <averagc>, calculate
<grade>, print <list>, add <student>, delete <studcnt>, transfer <student>, and
save <data>.

You must make some design decisions about which class is responsible for which
behavior. For example, will a ClassList display the record of a single Student, or
will a Student display hisor her own record? Who willenter scores—the GradeBook, a
ClassList, or a Student? Is it desirable for a Student to enter scores of other Students?
Probably not!

DECISIONS

Here are some preliminary decisions. The GradeBook will provideMenu. The menu
selection will send execution to the relevant object.

The ClassList will maintain an updated list ol each class. It will have these public
methods: addStudent, deleteStudent, transferStudent, createNewClass,
printClassList, printScores, and updateList. Agood candidate for a helper method
in this class is search for a given student.

Each Student will have complete personal and grade information. Public methods
will include setName, getName, enterScore, correctData, findAverage, getAverage,
getGrade,and displayRecord.

Saving and retrieving information is crucial to this program. The FileHandler will
take care of openFileForReading, openFileForWriting, closeFiles, loadClass, and
saveClass. TheFileHandler class should be written and tested right at the beginning,
usinga small dummy class list.

Score, ScoreList, andStudent are easy classes to implement. When these are work
ing, the programmer can go on to ClassList. Finally the Display GUI class, which
will have the GradeBook, can be developed. This is an example ofbottom-up develop
ment.

Vocabulary Summary

Know these terms for the AP exam:

207

Use verbs in the

specification to
identify possible
methods.



208

Vocabulary

software development
object-oriented program
program specification
program design
program implementation
test data

program maintenance
top-downdevelopment
independent class
bottom-updevelopment
driver class

inheritance relationship
compositionrelationship
inheritance hierarchy
UML diagram
data structure

encapsulation
information hiding
stepwise refinement
procedural abstraction
algorithm
stub method

debugging
robust program
compile-timc error
syntax error

run-time error

exception
logic error

Chapter 5 Program Design and Analysis

Meaning

Writing a program
Uses interacting objects
Description of atask
A written plan, an overview of thesolution
The code

Input to test the program
Keeping the program working and up to date
Implement main classes first, subsidiary classes later
Doesn't use otherclasses of the program in itscode
Implement lowest level, independent classes first
Used to test other classes; contains main method
is-a relationship between classes
has-a relationship between classes
Inheritance relationship shown in atree-like diagram
Graphical representation of relationship between classes
Java construct for storing adata field (e.g., array)
Combining data fields and methods in aclass
Using private to restrict access
Breaking methods intosmaller methods
Usinghelpermethods
Step-by-step process that solves a problem
Dummymethod called by another method being tested
Fixingerrors
Screens out badinput
Usually asyntax error; prevents program from compiling
Bad language usage (e.g., missing brace)
Occurs during execution (e.g., int division by 0)
Run-timeerrorthrown by Java method
Program runs but does thewrong thing

PROGRAM ANALYSIS

Program Correctness

Testing that aprogram works does notprove that the program is correct. After all, you
can hardly expect to test programs for every conceivable set of input data. Computer
scientists have developed mathematical techniques to prove correctness incertain cases,
but these are beyond the scope of the APCS course. Nevertheless, you are expected
to beable to make assertions about the state of a program atvarious points during its
execution.

Assertions

An assertion is a precise statement about a program at any given point. The idea is
that if an assertion isproved to betrue, then the program isworking correctly at that
point.

An informal step on the way to writing correct algorithms is to be able to make
different kindsof assertions about your code.



Program Analysis 209

PRECONDITION

The precondition for any piece ofcode, whether it is a method, loop, or block, is a
statement ofwhat istrueimmediately before execution ofthatcode.

POSTCONDITION

The postcondition for apiece of code is astatement of what is true immediately after
execution of that code.

Efficiency

An efficient algorithm isone that iseconomical in the use of

• CPU time. This refers to the number of machine operations required to carry
outthe algorithm (arithmetic operations, comparisons, data movements, etc.).

• Memory. This refers to the number and complexity ofthevariables used.

Some factors that affect run-time efficiency include unnecessary tests, excessive move
ment ofdata elements, and redundant computations, especially in loops.

Always aim for early detection ofoutput conditions: Your sorting algorithm should
halt when the list is sorted; your search should stop ifthe key element has been found.

In discussing efficiency of an algorithm, we refer to the best cose, worst cose, and
average case. The best case is a configuration of the data that causes the algorithm to
runinthe least possible amount oftime. The worst case is aconfiguration that leads to
the greatest possible run time. Typical configurations (i.e., not specially chosen data)
give the average case. It is possible that best, worst, and average cases don't differ much
in their run times.

For example, suppose that a list of distinct random numbers must be searched for a
given key value. The algorithm used is asequential search starting at the beginning of
the list. In the best case, the key will be found in the first position examined. Inthe
worst case, it will be in the last position or not in the list at all. Onaverage, the key
will be somewhere in the middle of the list.

____,--tv.ii ••) '_e__ej:-- •L.^I«<MW^.-.J.~~l

Chapter Summary

There's alot ofvocabulary that you are expected toknow in this chapter. Learn the
words!

Never make assumptions about a program specification, and always write adesign
before starting towrite code. Even ifyou don't do this for your own programs, these
are the answers you will be expected to give on the AP exam. You are certain toget
questions about program design. Know the procedures and terminology involved in
developing anobject-oriented program.

Be sure you understand what is meant by best case, worst case, and average case for
an algorithm. There will be questions about efficiency onthe AP exam.

Bynowyoushould knowwhata precondition andpostcondition are.


