

AP® Computer Science A

Elevens Lab

Student Guide

The AP Program wishes to acknowledge and thank the following individuals for their

contributions in developing this lab and the accompanying documentation.
Michael Clancy: University of California at Berkeley

Robert Glen Martin: School for the Talented and Gifted in Dallas, TX
Judith Hromcik: School for the Talented and Gifted in Dallas, TX

Introduction - 1 - Elevens Lab Student Guide

Elevens Lab Student Guide

Introduction

The following activities are
related to a simple solitaire game
called Elevens. You will learn the
rules of Elevens, and will be able
to play it by using the supplied
Graphical User Interface (GUI)
shown at the right. You will learn
about the design and the Object
Oriented Principles that
suggested that design. You will also implement much of the code.

Table of Contents

Introduction ..1

Activity 1: Design and Create a Card Class ...3

Activity 2: Initial Design of a Deck Class ..5

Activity 3: Shuffling the Cards in a Deck ..7

Activity 4: Adding a Shuffle Method to the Deck Class .. 11

Activity 5: Testing with Assertions (Optional) ... 13

Activity 6: Playing Elevens .. 19

Activity 7: Elevens Board Class Design .. 21

Activity 8: Using an Abstract Board Class .. 25

Activity 9: Implementing the Elevens Board .. 29

Activity 10: ThirteensBoard (Optional) ... 33

Activity 11: Simulation of Elevens (Optional) ... 35

Glossary .. 39

References ... 40

Introduction - 2 - Elevens Lab Student Guide

Activity 1 - 3 - Elevens Student Lab Guide

Activity 1: Design and Create a Card Class

Introduction:

In this activity, you will complete a Card class that will be used to create card objects.

Think about card games you’ve played. What kinds of information do these games require a card object to
“know”? What kinds of operations do these games require a card object to provide?

Exploration:

Now think about implementing a class to represent a playing card. What instance variables should it have?
What methods should it provide? Discuss your ideas for this Card class with classmates.

Read the partial implementation of the Card class available in the Activity1 Starter Code folder. As you read
through this class, you will notice the use of the @Override annotation before the toString method.
The Java @Override annotation can be used to indicate that a method is intended to override a method in a
superclass. In this example, the Object class’s toString method is being overridden in the Card class.
If the indicated method doesn’t override a method, then the Java compiler will give an error message.

Here’s a situation where this facility comes in handy. Programmers new to Java often encounter problems
matching headings of overridden methods to the superclass’s original method heading. For example, in the
Weight class below, the tostring method is intended to be invoked when toString is called for a
Weight object.

public class Weight {

 private int pounds;
 private int ounces;
 ...

 public String tostring(String str) {
 return this.pounds + " lb. " + this.ounces + " oz.";
 }

 ...
}

Unfortunately, this doesn't work; the tostring method given above has a different name and a different
signature from the Object class’s toString method. The correct version below has the correct name
toString and no parameter:

 public String toString() {
 return this.pounds + " lb. " + this.ounces + " oz.";
 }

Activity 1 - 4 - Elevens Student Lab Guide

The @Override annotation would cause an error message for the first tostring version to alert the
programmer of the errors.

Exercises:

1. Complete the implementation of the provided Card class. You will be required to complete:

a. a constructor that takes two String parameters that represent the card’s rank and suit, and an int
parameter that represents the point value of the card;

b. accessor methods for the card’s rank, suit, and point value;

c. a method to test equality between two card objects; and

d. the toString method to create a String that contains the rank, suit, and point value of the card
object. The string should be in the following format:

 rank of suit (point value = pointValue)

2. Once you have completed the Card class, find the CardTester.java file in the Activity1 Starter
Code folder. Create three Card objects and test each method for each Card object.

Activity 2 - 5 - Elevens Student Lab Guide

Activity 2: Initial Design of a Deck Class

Introduction:

Think about a deck of cards. How would you describe a deck of cards? When you play card games,
what kinds of operations do these games require a deck to provide?

 Exploration:
Now consider implementing a class to represent a deck of cards. Describe its instance variables and
methods, and discuss your design with a classmate.

Read the partial implementation of the Deck class available in the Activity2 Starter Code folder.
This file contains the instance variables, constructor header, and method headers for a Deck class
general enough to be useful for a variety of card games. Discuss the Deck class with your classmates;
in particular, make sure you understand the role of each of the parameters to the Deck constructor,
and of each of the private instance variables in the Deck class.

Exercises:

1. Complete the implementation of the Deck class by coding each of the following:

• Deck constructor — This constructor receives three arrays as parameters. The arrays contain
the ranks, suits, and point values for each card in the deck. The constructor creates an
ArrayList, and then creates the specified cards and adds them to the list.
For example, if ranks = {"A", "B", "C"}, suits = {"Giraffes", "Lions"},
and values = {2,1,6}, the constructor would create the following cards:

["A", "Giraffes", 2], ["B", "Giraffes", 1], ["C", "Giraffes", 6],
["A", "Lions", 2], ["B", "Lions", 1], ["C", "Lions", 6]

and would add each of them to cards. The parameter size would then be set to the size of
cards, which in this example is 6.

Finally, the constructor should shuffle the deck by calling the shuffle method. Note that you
will not be implementing the shuffle method until Activity 4.

• isEmpty — This method should return true when the size of the deck is 0; false
otherwise.

• size — This method returns the number of cards in the deck that are left to be dealt.

Activity 2 - 6 - Elevens Student Lab Guide

• deal — This method “deals” a card by removing a card from the deck and returning it, if there
are any cards in the deck left to be dealt. It returns null if the deck is empty. There are several
ways of accomplishing this task. Here are two possible algorithms:
Algorithm 1: Because the cards are being held in an ArrayList, it would be easy to simply
call the List method that removes an object at a specified index, and return that object.
Removing the object from the end of the list would be more efficient than removing it from the
beginning of the list. Note that the use of this algorithm also requires a separate “discard” list to
keep track of the dealt cards. This is necessary so that the dealt cards can be reshuffled and dealt
again.
Algorithm 2: It would be more efficient to leave the cards in the list. Instead of removing the
card, simply decrement the size instance variable and then return the card at size. In this
algorithm, the size instance variable does double duty; it determines which card to “deal” and
it also represents how many cards in the deck are left to be dealt. This is the algorithm that you
should implement.

2. Once you have completed the Deck class, find DeckTester.java file in the Activity2 Starter
Code folder. Add code in the main method to create three Deck objects and test each method for
each Deck object.

Questions:

1. Explain in your own words the relationship between a deck and a card.

2. Consider the deck initialized with the statements below. How many cards does the deck contain?

 String[] ranks = {"jack", "queen", "king"};
 String[] suits = {"blue", "red"};
 int[] pointValues = {11, 12, 13};
 Deck d = new Deck(ranks, suits, pointValues);

3. The game of Twenty-One is played with a deck of 52 cards. Ranks run from ace (highest) down to 2
(lowest). Suits are spades, hearts, diamonds, and clubs as in many other games. A face card has point
value 10; an ace has point value 11; point values for 2, …, 10 are 2, …, 10, respectively. Specify the
contents of the ranks, suits, and pointValues arrays so that the statement

 Deck d = new Deck(ranks, suits, pointValues);

 initializes a deck for a Twenty-One game.

4. Does the order of elements of the ranks, suits, and pointValues arrays matter?

Activity 4 - 7 - Elevens Student Lab Guide

Activity 3: Shuffling the Cards in a Deck

Introduction:

Think about how you shuffle a deck of cards by hand. How well do you think it randomizes the cards in
the deck?

Exploration:

We now consider the shuffling of a deck, that is, the permutation of its cards into a random-looking
sequence. A requirement of the shuffling procedure is that any particular permutation has just as much
chance of occurring as any other. We will be using the Math.random method to generate random
numbers to produce these permutations.

Several ideas for designing a shuffling method come to mind. We will consider two:

Perfect Shuffle

Card players often shuffle by splitting the deck in half and then interleaving the two half-decks, as shown
below.

This procedure is called a perfect shuffle if the interleaving alternates between the two half-decks.
Unfortunately, the perfect shuffle comes nowhere near generating all possible deck permutations.
In fact, eight shuffles of a 52-card deck return the deck to its original state!

Activity 4 - 8 - Elevens Student Lab Guide

Consider the following “perfect shuffle” algorithm that starts with an array named cards that contains
52 cards and creates an array named shuffled.

Initialize shuffled to contain 52 “empty” elements.
Set k to 0.
For j = 0 to 25,

− Copy cards[j] to shuffled[k];
− Set k to k+2.

Set k to 1.
For j = 26 to 51,

− Copy cards[j] to shuffled[k];
− Set k to k+2.

This approach moves the first half of cards to the even index positions of shuffled, and it moves
the second half of cards to the odd index positions of shuffled.

The above algorithm shuffles 52 cards. If an odd number of cards is shuffled, the array shuffled has
one more even-indexed position than odd-indexed positions. Therefore, the first loop must copy one
more card than the second loop does. This requires rounding up when calculating the index of the middle
of the deck. In other words, in the first loop j must go up to (cards.length + 1) / 2,
exclusive, and in the second loop j most begin at (cards.length + 1) / 2.

Selection Shuffle

Consider the following algorithm that starts with an array named cards that contains 52 cards and
creates an array named shuffled. We will call this algorithm the “selection shuffle.”

Initialize shuffled to contain 52 “empty” elements.
Then for k = 0 to 51,

− Repeatedly generate a random integer j between 0 and 51, inclusive until
cards[j] contains a card (not marked as empty);

− Copy cards[j] to shuffled[k];
− Set cards[j] to empty.

This approach finds a suitable card for the kth position of the deck. Unsuitable candidates are any cards
that have already been placed in the deck.

While this is a more promising approach than the perfect shuffle, its big defect is that it runs too slowly.
Every time an empty element is selected, it has to loop again. To determine the last element of
shuffled requires an average of 52 calls to the random number generator.

Activity 4 - 9 - Elevens Student Lab Guide

A better version, the “efficient selection shuffle,” works as follows:

For k = 51 down to 1,
− Generate a random integer r between 0 and k, inclusive;
− Exchange cards[k] and cards[r].

This has the same structure as selection sort:

For k = 51 down to 1,
− Find r, the position of the largest value among cards[0] through cards[k];
− Exchange cards[k] and cards[r].

The selection shuffle algorithm does not require to a loop to find the largest (or smallest) value to swap, so
it works quickly.

Exercises:

1. Use the file Shuffler.java, found in the Activity3 Starter Code, to implement the perfect
shuffle and the efficient selection shuffle methods as described in the Exploration section of this
activity. You will be shuffling arrays of integers.

2. Shuffler.java also provides a main method that calls the shuffling methods. Execute the
main method and inspect the output to see how well each shuffle method actually randomizes the
array elements. You should execute main with different values of SHUFFLE_COUNT and
VALUE_COUNT.

Questions:

1. Write a static method named flip that simulates a flip of a weighted coin by returning either
"heads" or "tails" each time it is called. The coin is twice as likely to turn up heads as tails.
Thus, flip should return "heads" about twice as often as it returns "tails."

2. Write a static method named arePermutations that, given two int arrays of the same length
but with no duplicate elements, returns true if one array is a permutation of the other (i.e., the
arrays differ only in how their contents are arranged). Otherwise, it should return false.

3. Suppose that the initial contents of the values array in Shuffler.java are {1, 2, 3,
4}. For what sequence of random integers would the efficient selection shuffle change values to
contain {4, 3, 2, 1}?

Activity 4 - 10 - Elevens Student Lab Guide

Activity 4 - 11 - Elevens Student Lab Guide

Activity 4: Adding a Shuffle Method to the Deck
Class

Introduction:

You implemented a Deck class in Activity 2. This class should be complete except for the shuffle
method. You also implemented a DeckTester class that you used to test your incomplete Deck
class.

In Activity 3, you implemented methods in the Shuffler class, which shuffled integers.

Now you will use what you learned about shuffling in Activity 3 to implement the Deck shuffle
method.

Exercises:

1. The file Deck.java, found in the Activity4 Starter Code folder, is a correct solution from
Activity 2. Complete the Deck class by implementing the shuffle method. Use the efficient
selection shuffle algorithm from Activity 3.

Note that the Deck constructor creates the deck and then calls the shuffle method. The
shuffle method also needs to reset the value of size to indicate that all of the cards can be
dealt again.

2. The DeckTester.java file, found in the Activity4 Starter Code folder, provides a basic set
of Deck tests. It is similar to the DeckTester class you might have written in Activity 2.
Add additional code at the bottom of the main method to create a standard deck of 52 cards and
test the shuffle method. You can use the Deck toString method to “see” the cards after
every shuffle.

Activity 4 - 12 - Elevens Student Lab Guide

Activity 5 - 13 - Elevens Student Lab Guide

Activity 5: Testing with Assertions (Optional)

Introduction:

In the previous activities, you were asked to design and implement the Card and Deck classes. Upon
completion of those tasks, you were instructed to test those classes by creating objects and testing each of
the class’ methods. In this activity, we will take a more formal approach to testing and introduce the Java
assert statement.

Exploration:

What is the purpose of testing? Programmers make mistakes. These range from misunderstanding an
algorithm or a problem specification (the most serious), to simple typing errors. The purpose of program
testing is to find as many of those mistakes as possible. Let’s consider some aspects of testing.

Efficient and organized testing

How should we test a program? Clearly, we need to run the program and see whether its behavior matches
what is intended. There’s more to it than that, though. Good testing is systematic. A programmer should
pick test cases not at random but in a way more likely to find errors. For example, one should choose test
runs that collectively exercise all parts of a program. Code that isn’t executed may contain bugs. Good
testing is also programmer-efficient. Tests should be easy to run. Test cases should be chosen to be as
simple as possible while still being complex enough to expose errors. Simple test cases can also make it
easier to see what a program is doing wrong.

For this activity, we will focus on finding two kinds of errors:

• Inconsistencies, where two parts of the program have different expectations about a variable’s
value, for example; and

• Common “typos of the brain,” such as off-by-one errors and substitution of one operator for
another (such as using > instead of <).

Our tests will all involve assertions, boolean expressions that should be true if the program is
running correctly. We will incorporate our tests in a “tester” class whose main method executes the
tests.

Activity 5 - 14 - Elevens Student Lab Guide

Assertions in Java

Our testing code will use the Java assert statement. This statement has the following form:

assert booleanExpression : StringExpression;

If the value of booleanExpression is true, the program continues with the next statement. If the value of
booleanExpression is false, the program throws an AssertionError exception and prints
StringExpression. It also prints a Stack Trace (more on that later). Here's an example using assert.

Card c1 = new Card("ace", "hearts", 1);
Card c2 = new Card("ace", "hearts", 1);
assert c1.matches(c2) : "Duplicate cards do not match.";

This code creates two new Card objects, and then checks that they contain the same information.
If c1.matches(c2) returns true, then execution continues with the next statement. However,
if the program has an error which results in c1.matches(c2) returning false, an
AssertionError is thrown and the message "Duplicate cards do not match." is output.

Assertions are disabled by default. To use them, the command-line option -ea (Enable Assertions) is
used. For example, the following would run the main method in CardTester with assertions enabled:

java -ea CardTester

Organizing tests of the Card class

We move on to test the Card class. Cards have a constructor and several methods (suit, rank,
pointValue, matches, and toString). Our tests must cover all of these methods.

First, we create a file named CardTester.java. This name was chosen to describe its purpose.
Its main method will start by creating some Card objects that will be used to do the testing:

Card c1 = new Card("ace", "hearts", 1);
Card c2 = new Card("ace", "hearts", 1);
Card c3 = new Card("ace", "hearts", 2);
Card c4 = new Card("ace", "spades", 1);
Card c5 = new Card("king", "hearts", 1);
Card c6 = new Card("queen", "clubs", 3);

The first two cards are identical. Cards c3, c4, and c5 each differ from c1 in only one of the
instance variable values. These “one difference” cards will help us find copy/paste errors; for example, if
the body of suit was copied from rank and pasted without change. The last card is different from
the others in all of the values.

Activity 5 - 15 - Elevens Student Lab Guide

We start by testing the Card accessor methods. These tests merely check, using cards with completely
different information, that what’s stored is what was provided in the constructor. Note the inclusion in
the String message of information about which value was involved in each assertion.

assert c1.rank().equals("ace") : "Wrong rank: " + c1.rank();
assert c1.suit().equals("hearts") : "Wrong suit: " + c1.suit();
assert c1.pointValue() == 1 : "Wrong point value: "
 + c1.pointValue();
assert c6.rank().equals("queen") : "Wrong rank: " + c6.rank();
assert c6.suit().equals("clubs") : "Wrong suit: " + c6.suit();
assert c6.pointValue() == 3: "Wrong point value : "
 + c6.pointValue();

Next, we test the Card method matches. Two cards match if and only if they have the same rank,
suit, and point values. A likely implementation of matches will involve some comparisons and some
uses of &&. Common bugs are the copy/paste error mentioned above and the substitution of || for
&&. Comparing c1 to all the others should reveal these kinds of errors.

assert c1.matches(c1) : "Card doesn't match itself: " + c1;
assert c1.matches(c2) : "Duplicate cards aren't equal: " + c1;
assert !c1.matches(c3)
 : "Different cards are equal: " + c1 + ", " + c3;
assert !c1.matches(c4)
 : "Different cards are equal: " + c1 + ", " + c4;
assert !c1.matches(c5)
 : "Different cards are equal: " + c1 + ", " + c5;
assert !c1.matches(c6)
 : "Different cards are equal: " + c1 + ", " + c6;

Finally, we test toString, again on two completely different objects.

assert c1.toString().equals("ace of hearts (point value = 1)")
 : "Wrong toString: " + c1;
assert c6.toString().equals("queen of clubs (point value = 3)")
 : "Wrong toString: " + c6;

If all of the tests pass, we provide a message that says so:

System.out.println("All tests passed!");

Systematic testing

Cards didn’t involve any data structures more complicated than strings. When testing a class with more
complex structures, it makes sense to start small. With a Deck class, for example, it might make sense to
first provide tests that use a 1-card deck, and then a 2-card deck with different cards.

Activity 5 - 16 - Elevens Student Lab Guide

But, would all these tests get out of control? Just as in other programming you’ve done, it makes sense to
split a long sequence of statements into “helper” methods. The result may be a smaller test program, and
some of the assertion sequences might be easier to reuse. The main method in a DeckTester class
might be the following:

public static void main(String[] args) {
 test1CardDeck();
 test2CardDeck();
 testShuffle();
 System.out.println("All tests passed!");
}

Exercises:

1. The folder Activity5 Starter Code contains the four subfolders Buggy1, Buggy2, Buggy3, and
Buggy4. Each of these contains a different buggy version of the Deck class. These buggy decks have
been precompiled; only the Deck.class bytecode file is included. These buggy versions each
contain one error caused by either moving a statement, or substituting one symbol for another, e.g.,
1 for 0 or > for <. Test each of them with the DeckTester application provided in each
folder:

java -ea DeckTester

If you are using a Windows-based system, you can just execute the provided DeckTester.bat file.

Each of the four different DeckTester runs will produce an AssertionError exception,
along with information about why the error occurred. For each error that occurs, write down which
method or constructor of the buggy Deck class could contain the bug, and make an educated guess
about the cause of the error. You might find it helpful to refer to your completed Deck class from
Activity 4.

Note: The Buggy1 test will produce output similar to the following:

... >java -ea DeckTester
Exception in thread "main" java.lang.AssertionError: isEmpty is
false for an empty deck.
 at DeckTester.testEmpty(DeckTester.java:98)
 at DeckTester.test1CardDeck(DeckTester.java:28)
 at DeckTester.main(DeckTester.java:12)

Activity 5 - 17 - Elevens Student Lab Guide

The last three lines of output are a stack trace that tells you that the

• AssertionError occurred in the testEmpty method at line 98.

• testEmpty method was called from the test1CardDeck method at line 28.

• test1CardDeck method was called from the main method at line 12.

Record your conclusions below:

Buggy1:

Constructor or Method (write method name):

Describe a Possible Code Error:

__

 __

Buggy2:

Constructor or Method (write method name):

Describe a Possible Code Error:

__

 __

Buggy3:

Constructor or Method (write method name):

Describe a Possible Code Error:

__

 __

Activity 5 - 18 - Elevens Student Lab Guide

Buggy4:

Constructor or Method (write method name):

Describe a Possible Code Error:

__

__

2. Now, examine the Buggy5 folder. This folder contains a Deck.java file with multiple errors. Use
DeckTester to help you find the errors. Correct each error until the Deck class has passed all of
its tests.

Note that you may receive a runtime error other than AssertionError when running
DeckTester. If so, you may find it helpful to switch the order of 1-card deck and 2-card deck tests
as follows:

public static void main(String[] args) {
 test2CardDeck(); // order swapped
 test1CardDeck(); // order swapped
 testShuffle();
 System.out.println("All tests passed!");
}

Activity 6 - 19 - Elevens Student Lab Guide

Activity 6: Playing Elevens

Introduction:
In this activity, the game Elevens will be explained, and you will play an interactive version of the game.

Exploration:

The solitaire game of Elevens uses a deck of 52 cards, with ranks A (ace), 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack),
Q (queen), and K (king), and suits ♣ (clubs), ♦ (diamonds), ♥ (hearts), and ♠ (spades). Here is how it
is played.

1. The deck is shuffled, and nine cards are dealt “face up” from the deck to the board.
2. Then the following sequence of steps is repeated:

a. The player removes each pair of cards (A, 2, … , 10) that total 11, e.g., an 8 and a 3, or a 10
and an A. An ace is worth 1, and suits are ignored when determining cards to remove.

b. Any triplet consisting of a J, a Q, and a K is also removed by the player. Suits are also ignored
when determining which cards to remove.

c. Cards are dealt from the deck if possible to replace the cards just removed.

The game is won when the deck is empty and no cards remain on the table. Here’s a sample game, in
which underlined cards are replacements from the deck.

Cards on the Table Explanation

K♠ 10♦ J♣ 2♣ 2♥ 9♦ 3♥ 5♠ 5♦ initial deal

K♠ 10♦ J♣ 7♦ 2♥ Q♠ 3♥ 5♠ 5♦ remove 2♣ (either 2 would work) and 9♦

A♠ 10♦ 9♣ 7♦ 2♥ 7♣ 3♥ 5♠ 5♦ remove J♣ Q♠ K♠

A♠ 10♦ 10♠ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove 9♣ and 2♥ (removing A♠ and 10♦ would
have been legal here too)

2♠ 10♦ 9♠ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove A♠ and 10♠ (10♦ could have been removed
instead)

A♣ 10♦ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove 2♠ and 9♠

6♦ K♣ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove A♣ and 10♦

Activity 6 - 20 - Elevens Student Lab Guide

2♦ K♣ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ Q♦ remove 6♦ and one of the 5s; no further plays are
possible; game is lost.

An interactive GUI version of Elevens allows one to play by clicking card images and buttons rather than
by handling actual cards. When Elevens.jar is run, the cards on the board are displayed in a window.
Clicking on an unselected card selects it; clicking on a selected card unselects it. Clicking on the Replace
button first checks that the selection is legal; if so, it does the removal and deals cards to fill the empty
slots. Clicking on the Restart button restarts the game.

The folder Activity6 Starter Code contains the file Elevens.jar that, when executed, runs a
GUI-based implementation. In a Windows environment, you may be able to run it by double-clicking
on it. Otherwise you can run it with the command

java –jar Elevens.jar

Play a few games of Elevens. How many did you win?

Questions:

1. List all possible plays for the board 5♠ 4♥ 2♦ 6♣ A♠ J♥ K♦ 5♣ 2♠

2. If the deck is empty and the board has three cards left, must they be J, Q, and K? Why or why not?

3. Does the game involve any strategy? That is, when more than one play is possible, does it matter
which one is chosen? Briefly explain your answer.

Activity 7 - 21 - Elevens Student Lab Guide

Activity 7: Elevens Board Class Design

Introduction:

Now that the Card and Deck classes are completed, the next class to design is ElevensBoard.
This class will contain the state (instance variables) and behavior (methods) necessary to play the game of
Elevens.

Questions:

1. What items would be necessary if you were playing a game of Elevens at your desk (not on the
computer)? List the private instance variables needed for the ElevensBoard class.

2. Write an algorithm that describes the actions necessary to play the Elevens game.

3. Now examine the partially implemented ElevensBoard.java file found in the Activity7

Starter Code directory. Does the ElevensBoard class contain all the state and behavior
necessary to play the game?

Activity 7 - 22 - Elevens Student Lab Guide

4. ElevensBoard.java contains three helper methods. These helper methods are private
because they are only called from the ElevensBoard class.

a. Where is the dealMyCards method called in ElevensBoard?

b. Which public methods should call the containsPairSum11 and containsJQK
methods?

c. It’s important to understand how the cardIndexes method works, and how the list that it
returns is used. Suppose that cards contains the elements shown below. Trace the execution
of the cardIndexes method to determine what list will be returned. Complete the diagram
below by filling in the elements of the returned list, and by showing how those values index
cards. Note that the returned list may have less than 9 elements.

 cards ->

 returned ->
 list

0 1 2 3 4 5 6 7 8

J♥ 6♣ null 2♠ null null A♠ 4♥ null

0 1 2 3 4 5 6 7 8

Activity 7 - 23 - Elevens Student Lab Guide

d. Complete the following printCards method to print all of the elements of cards that are

indexed by cIndexes.

public static printCards(ElevensBoard board) {
 List<Integer> cIndexes = board.cardIndexes();

 /* Your code goes here. */

}

e. Which one of the methods that you identified in question 4b above needs to call the
cardIndexes method before calling the containsPairSum11 and containsJQK
methods? Why?

Activity 7 - 24 - Elevens Student Lab Guide

Activity 8 - 25 - Elevens Student Lab Guide

Activity 8: Using an Abstract Board Class

Introduction:

The Elevens game belongs to a set of related solitaire games. In this activity you will learn about some of
these related games. Then you will see how inheritance can be used to reuse the code that is common to
all of these games without rewriting it.

Exploration: Related Games

Thirteens

A game related to Elevens, called Thirteens, uses a 10-card board. Ace, 2, … , 10, jack, queen correspond
to the point values of 1, 2, …, 10, 11, 12. Pairs of cards whose point values add up to 13 are selected and
removed. Kings are selected and removed singly. Chances of winning are claimed to be about 1 out of 2.

Tens

Another relative of Elevens, called Tens, uses a 13-card board. Pairs of cards whose point values add to 10
are selected and removed, as are quartets of kings, queens, jacks, and tens, all of the same rank (for

example, K♠, K♥, K♦, and K♣). Chances of winning are claimed to be about 1 in 8 games.

Exploration: Abstract Classes

In reading the descriptions of Elevens and its related games, it is evident that these games share common
state and behaviors. Each game requires:

• State (instance variables) — a deck of cards and the cards “on the” board.

• Behavior (methods) — to deal the cards, to remove and replace selected cards, to check for a win,
to check if selected cards satisfy the rules of the game, to see if there are more legal selections
available, and so on.

With all of this state and behavior in common, it would seem that inheritance could allow us to write code
once and reuse it, instead of having to copy it for each different game.

But how? If we use the “IS-A” test, a ThirteensBoard “IS-A” ElevensBoard is not true. They
have a lot in common, but an inheritance relationship between the two does not exist. So how do we
create an inheritance hierarchy to take advantage of the commonalities between these two related boards?

Activity 8 - 26 - Elevens Student Lab Guide

The answer is to use a common superclass. Take all the state and behavior that these boards have in
common and put them into a new Board class. Then have ElevensBoard, TensBoard, and
ThirteensBoard inherit from the Board class. This makes sense because each of them is just a
different kind of board. An ElevensBoard “IS-A” Board, a ThirteensBoard “IS-A”
Board, and a TensBoard “IS-A” Board. A diagram that shows the inheritance relationships of
these classes is included below. Note that Board is shown as abstract. We’ll discuss why later.

Let’s see how this works out for dividing up our original ElevensBoard code from Activity 7.
Because all these games need a deck and the cards on the board, all of the instance variables can go into
Board. Some methods, like deal, will work the same for every game, so they should be in Board
too. Methods like containsJQK are Elevens-specific and should be in ElevensBoard. So far,
so good.

But what should we do with the isLegal and anotherPlayIsPossible methods? Every
Elevens-related game will have both of these methods, but they need to work differently for each different
game. That’s exactly why Java has abstract methods. Because each of these games needs isLegal
and anotherPlayIsPossible methods, we include those methods in Board. However, because
the implementation of these methods depends on the specific game, we make them abstract in
Board and don’t include their implementations there. Also, because Board now contains
abstract methods, it must also be specified as abstract. Finally, we override each of these
abstract methods in the subclasses to implement their specific behavior for that game.

But if we have to implement isLegal and anotherPlayIsPossible in each game-specific
board class, why do we need to have the abstract methods in Board? Consider a class the uses a
board, such as the GUI program you used in Activity 6. Such a class is called a client of the Board class.

Activity 8 - 27 - Elevens Student Lab Guide

The GUI program does not actually need to know what kind of a game it is displaying! It only knows that

the board that was provided “IS-A” Board, and it only “knows” about the methods in the Board
class. The GUI program is only able to call isLegal and anotherPlayIsPossible because
they are included in Board.

Finally, we need to understand how the GUI program is able to execute the correct isLegal and
anotherPlayIsPossible methods. When the GUI program starts, it is provided an object of a
class that inherits from Board. If you want to play Elevens, you provide an ElevensBoard object.
If you want to play Tens, you provide a TensBoard object. So, when the GUI program uses that object
to call isLegal or anotherPlayIsPossible, it automatically uses the method implementation
included in that particular object. This is known as polymorphism.

Questions:

1. Discuss the similarities and differences between Elevens, Thirteens, and Tens.

2. As discussed previously, all of the instance variables are declared in the Board class. But it is the
ElevensBoard class that “knows” the board size, and the ranks, suits, and point values of the
cards in the deck. How do the Board instance variables get initialized with the ElevensBoard
values? What is the exact mechanism?

3. Now examine the files Board.java, and ElevensBoard.java, found in the Activity8
Starter Code directory. Identify the abstract methods in Board.java. See how these
methods are implemented in ElevensBoard. Do they cover all the differences between Elevens,
Thirteens, and Tens as discussed in question 1? Why or why not?

Activity 8 - 28 - Elevens Student Lab Guide

Activity 9 - 29 - Elevens Student Lab Guide

Activity 9: Implementing the Elevens Board

Introduction:

In Activity 8, we refactored (reorganized) the original ElevensBoard class into a new Board class
and a much smaller ElevensBoard class. The purpose of this change was to allow code reuse in new
games such as Tens and Thirteens. Now you will complete the implementation of the methods in the
refactored ElevensBoard class.

Exercises:

1. Complete the ElevensBoard class in the Activity9 Starter Code folder, implementing the
following methods.

Abstract methods from the Board class:

a. isLegal — This method is described in the method heading and related comments below.
The implementation should check the number of cards selected and utilize the ElevensBoard
helper methods.

 /**
 * Determines if the selected cards form a valid group for removal.
 * In Elevens, the legal groups are (1) a pair of non-face cards
 * whose values add to 11, and (2) a group of three cards consisting of
 * a jack, a queen, and a king in some order.
 * @param selectedCards the list of the indexes of the selected cards.
 * @return true if the selected cards form a valid group for removal;
 * false otherwise.
 */
 @Override
 public boolean isLegal(List<Integer> selectedCards)

Activity 9 - 30 - Elevens Student Lab Guide

b. anotherPlayIsPossible — This method should also utilize the helper methods. It
should be very short.

/**
 * Determine if there are any legal plays left on the board.
 * In Elevens, there is a legal play if the board contains
 * (1) a pair of non-face cards whose values add to 11, or (2) a group
 * of three cards consisting of a jack, a queen, and a king in some order.
 * @return true if there is a legal play left on the board;
 * false otherwise.
 */
@Override

 public boolean anotherPlayIsPossible()

ElevensBoard helper methods:

c. containsPairSum11 — This method determines if the selected elements of cards
contain a pair of cards whose point values add to 11.

/**
 * Check for an 11-pair in the selected cards.
 * @param selectedCards selects a subset of this board. It is this list
 * of indexes into this board that are searched
 * to find an 11-pair.
 * @return true if the board entries indexed in selectedCards
 * contain an 11-pair; false otherwise.
 */
private boolean containsPairSum11(List<Integer> selectedCards)

d. containsJQK — This method determines if the selected elements of cards contains a
jack, a queen, and a king in some order.

 /**
 * Check for a JQK in the selected cards.
 * @param selectedCards selects a subset of this board. It is this list
 * of indexes into this board that are searched
 * to find a JQK-triplet.
 * @return true if the board entries indexed in selectedCards
 * include a jack, a queen, and a king; false otherwise.
 */

private boolean containsJQK(List<Integer> selectedCards)

Activity 9 - 31 - Elevens Student Lab Guide

When you have completed these methods, run the main method found in
ElevensGUIRunner.java. Make sure that the Elevens game works correctly. Note
that the cards directory must be in the same directory with your .class files.

Questions:

1. The size of the board is one of the differences between Elevens and Thirteens. Why is size not an
abstract method?

2. Why are there no abstract methods dealing with the selection of the cards to be removed or replaced
in the array cards?

3. Another way to create “IS-A” relationships is by implementing interfaces. Suppose that instead of
creating an abstract Board class, we created the following Board interface, and had
ElevensBoard implement it. Would this new scheme allow the Elevens GUI to call isLegal
and anotherPlayIsPossible polymorphically? Would this alternate design work as well as
the abstract Board class design? Why or why not?

 public interface Board
 {
 boolean isLegal(List<Integer> selectedCards);

 boolean anotherPlayIsPossible();
 }

Activity 9 - 32 - Elevens Student Lab Guide

Activity 10 - 33 - Elevens Student Lab Guide

Activity 10: ThirteensBoard (Optional)

Introduction:

The purpose of this activity is to create the Thirteens game using the knowledge gained from
implementing the Elevens game.

Exploration:

The rules for the Thirteens game are repeated below:

Thirteens

A game related to Elevens, called Thirteens, uses a 10-card board. Ace, 2, … , 10, jack, queen correspond
to the point values of 1, 2, …, 10, 11, 12. Pairs of cards whose point values add up to 13 are selected and
removed. Kings are selected and removed singly. Chances of winning are claimed to be about 1 out of 2.

Exercises:

1. The Activity10 Starter Code folder contains all the code for a complete working Elevens game.
Review the code in the ElevensBoard class. Identify the changes that would be necessary to
implement the Thirteens game.

2. Copy and paste the ElevensBoard.java file into a new file, ThirteensBoard.java.
Make the necessary changes to this file to implement the Thirteens game.

3. The Activity10 Starter Code folder also contains the ElevensGUIRunner.java file that is
shown below. This program creates the board (an ElevensBoard object). Then it creates the GUI
(a CardGameGUI object). Finally, it displays the GUI by calling its displayGame method.
Review the code in the ElevensGUIRunner class as shown below. Identify the changes that
would be necessary to implement the Thirteens game.

/**

 * This is a class that plays the GUI version of the Elevens game.
 * See accompanying documents for a description of how Elevens is played.
 */
public class ElevensGUIRunner {

 /**
 * Plays the GUI version of Elevens.
 * @param args is not used.

Activity 10 - 34 - Elevens Student Lab Guide

 */
 public static void main(String[] args) {
 Board board = new ElevensBoard();
 CardGameGUI gui = new CardGameGUI(board);
 gui.displayGame();
 }
}

4. Copy and paste the ElevensGUIRunner.java file into a new file,
ThirteensGUIRunner.java. Make the necessary changes to this file to implement the
Thirteens game.

5. Run the ThirteensGUIRunner program and test your new Thirteens game.

Activity 11 - 35 - Elevens Student Lab Guide

Activity 11: Simulation of Elevens (Optional)

Introduction:

We have implemented two different solitaire games that we can play, Elevens and Thirteens. That is
perfect if we want to entertain ourselves playing them. But what if we want to answer questions about the
games? For example, what percentage of Elevens games can be won? You probably already have some idea
about the answer to this question, but you might have to play thousands of games to have any real
confidence in your answer. That’s where simulation comes in.

Exploration:

A common computing application is the simulation of some process; in other words, writing a program
that imitates the process in some way. The behaviors and state in the program represent key features of,
and are said to provide a model for, the process. An example is a simulation of a household robot vacuum
cleaner. Internally, the simulation program is keeping track of its environment, the battery level, and the
amount of dust in its dust container, and is perhaps displaying them on a computer console. Program
methods plot the robot’s course through rooms in the “house” and determine when it is finished.

A simulation is useful when the process being simulated is too complicated, too slow, too dangerous, or
too expensive to observe in the real world. Also, understanding the program helps one understand the
process being simulated. For example, the producers of the robot vacuum cleaner would have used a
simulation to debug its algorithms before starting to manufacture the actual robots.

A program is called probabilistic when its state change is affected by chance. One example is a traffic
simulation, which has to account for cars unpredictably entering the traffic zone and driving at varying
speeds. A more obvious example is a simulation of a game based on dice or spinners. In Elevens, the
probabilistic element is the shuffling of the deck of cards.

To model random events, we use a pseudo-random number generator (the “pseudo” is usually omitted).
In the Deck shuffle method, we used the Math.random method to generate our random
numbers. This reliance on chance significantly complicates the task of verifying that a simulation is
behaving correctly. The programmer needs to have a good idea of what output to expect. Also, a small
number of outcomes of the chance events may produce misleading behavior. For example, four flips of a
coin may produce all heads, but it would be a mistake to assume that this behavior would happen often.
Ten thousand flips would produce the more reasonable outcome of around 50 percent heads and
50 percent tails. The typical probabilistic simulation involves a large number of calls to the random
number generator to increase the likelihood that the output reflects expected behavior.

Activity 11 - 36 - Elevens Student Lab Guide

To simulate Elevens, we will need to model the “playing” of the game using program state and behavior.
Let’s see how the real world relates to the code:

STATE:

Real-world “data” Program data

The deck of cards A List of Card objects

The cards on the board An array of Card objects

BEHAVIOR:

Real-world operations Program operations

Locating cards to remove Searching for specific groups of Card objects in
the board (an 11-pair or a JQK-triplet)

Removing cards and
replacing them

Removing Card objects from the board and
replacing them with Card objects from the deck

Dealing a card Removing a Card object from the deck

We have most of this code already written. We have already taken care of all the state requirements.
The deck of cards is modeled by the cards list in the Deck class. And the cards on the board are
represented by the cards array in the Board class. We have also written methods for most of the
necessary behaviors. In fact, we only need to model the additional things you do when you are playing the
game yourself!

In the exercises, you will use an ElevensSimulation class, which will play games of Elevens. It will
need access to methods that mimic the actions you make when you play the game. What do you do when
you play the game and why do you do it? Answer these questions:

• What do you do repeatedly to play a game?
• As you are scanning the cards on the board, what are you trying to find?
• Why do you decide to click on a group of cards?
• What happens when you click the Replace button?

We will model these behaviors with three new methods in the ElevensBoard class:
• playIfPossible — Looks for a legal play and makes the play (if found). This is the only

new method that ElevensSimulation needs to call directly. We could put all of our new
code into this method, but it’s helpful to divide it up using two new private helper methods.

• playPairSum11IfPossible — Looks for an 11-pair and replaces it (if found).
• playJQKIfPossible — Looks for a JQK-triplet and replaces it (if found).

Activity 11 - 37 - Elevens Student Lab Guide

Next we consider the implementation of playPairSum11IfPossible. This method needs to first
determine if the board contains an 11-pair. Then, if it finds one, it needs to remove it. Of course,
playPairSum11IfPossible could call containsPairSum11 to see if there is an 11-pair on
the board. But containsPairSum11 doesn’t return any information about the indexes of the two
cards that make up the 11-pair. So, playPairSum11IfPossible would have to find the pair again
before removing it. To avoid having to find the pair twice, we would need to copy the code from

containsPairSum11 into playPairSum11IfPossible. Thankfully, there’s a better way.

What if we change the containsPairSum11 method into a findPairSum11 method? In other
words, instead of having a “contains” method that returns a boolean value, we have a “find” method
that returns a list of the indexes of the two cards in the pair. If there is no 11-pair on the board, it will
return an empty list. Now, playPairSum11IfPossible will be able to call findPairSum11,
and if there is an 11-pair, it will already have the list of indexes needed to call the
replaceSelectedCards method. This design eliminates both the duplicated code and the double
work! We will need to make a similar modification to change the containsJQK method into a
findJQK method for the playJQKIfPossible method to call.

Note that it’s usually not possible to foresee everything during the initial design of a program. For
example, in the GUI version of Elevens, there was no need for “find” methods. The person playing the
game had that task. However, the “find” methods became useful when we got into the details of the
simulation. So, program designs can and do change.

Of course, when we do an initial program design, we try to accommodate all the needs of the problem as
we understand them. But we also try to keep the design flexible, so that we can accommodate future
needs. One rule of program design is that methods should be private, unless there is a good reason
for another class to call those methods. Because we initially made containsPairSum11 private,
we know that no other class uses it. Therefore, it’s safe to rename and change it.

Exercises:

1. First, examine the completed ElevensSimulation class in the Activity11 Starter Code folder.
This simulation creates an ElevensBoard object, and uses it to play GAMES_TO_PLAY games
of Elevens. Note that the only new ElevensBoard method used is playIfPossible.

2. Now make the necessary changes to the ElevensBoard class. Change containsPairSum11
into findPairSum11. You will need to change both the method heading and the method body.
Note that the method’s comment block has already been changed for you.

Activity 11 - 38 - Elevens Student Lab Guide

3. Change the isLegal and anotherPlayIsPossible methods to use findPairSum11
instead of containsPairSum11. Note that the board contains an 11-pair if and only if
findPairSum11(cIndexes).size() > 0 .

4. Change containsJQK to findJQK in a similar fashion to the containsPairSum11 to
findPairSum11 conversion you did in exercise 2 above. Again, the method’s comment block has
already been changed for you.

5. Change the isLegal and anotherPlayIsPossible methods to use findJQK instead of
containsJQK. At this point, the Elevens GUI program should work just as it did before.

6. It’s time to complete the ElevensBoard methods required by the ElevensSimulation
class. First complete the public playIfPossible method, which is called from the
ElevensSimulation class. This method will use the private
playPairSum11IfPossible and playJQKIfPossible helper methods. Note that you
will have to replace the return statement in the stubbed out method.

7. Complete the private playPairSum11IfPossible and playJQKIfPossible helper
methods. Note that you will have to replace the return statements in the stubbed out methods.

8. Now it’s time to test your simulation-related changes. Make sure that GAMES_TO_PLAY and
I_AM_DEBUGGING are initialized to 1 and true respectively in ElevensSimulation.
Also make sure that I_AM_DEBUGGING is initialized to true in ElevensBoard. Run the
ElevensSimulation program a few times and examine the output. You should be able to see
both 11-pairs and JQK-triplets being correctly identified and removed.

Questions:

1. Set the I_AM_DEBUGGING flags to false and GAMES_TO_PLAY to 10. Run the
ElevensSimulation program a few times and record the percentage of games won for each run.
What is the range of win percentages that you saw? Were the percentages fairly consistent, or did they
vary quite a bit?

2. Increase the number of games to play to 100. Are the win percentages more consistent from run
to run?

3. Experiment with simulating different numbers of games. How many games do you need to play in
order to get consistent results from run to run?

4. Optional — Repeat the above steps for the Thirteens game.

Glossary - 39 - Elevens Student Lab Guide

Glossary

assertion: Boolean expressions that should be true if the program is running correctly. The Java
assert statement can be used to check assertions in a program.

class invariant: A logical statement relating to the values of the instance variables of a class that is
always true between calls to the class’s methods (also referred to as a “data invariant”).
(“Invariant” means “not varying” or “not changing.”)

client class: A class that uses another class (e.g., The Deck class is a client of the Card class.).

helper method: A method, usually private, that is called by another method. Helper methods are
used to simplify the calling method. They also facilitate code reuse when they provide a function
that can be used by more than one calling method.

loop invariant: A logical statement that is always true when execution reaches a loop’s termination
test.

model: A class with behaviors and state that represent key features of some “real-world” object or
process. We say that a class models the “real-world” object. For example, the Deck class models
a real deck of cards.

perfect shuffle: A card-shuffling method that starts with dividing the deck into two stacks, then
interleaving the cards, first a card from stack 1, then a card from stack 2, then another card from
stack 1, another from stack 2, and so on.

permutation: A rearrangement of a given sequence of values. There are six permutations of the
sequence [1,2,3], namely [1,2,3] (the “identity” permutation), [1,3,2], [2,1,3], [2,3,1], [3,1,2], and
[3,2,1]. If the given sequence contains duplicate values, so will its permutations. For example, the
permutations of [1,1,2] are [1,1,2], [1,2,1], and [2,1,1].

polymorphism: A process that Java uses where the method to execute is based on the object executing
the method. For example, if board.anotherPlayIsPossible() is executed, and
board references an ElevensBoard object, then the ElevensBoard
anotherPlayIsPossible method will be called.

probabilistic: Based on chance or involving the use of randomness.

pseudo-random number generator: A procedure that produces a sequence of values that passes
various statistical tests for randomness (e.g., any value is just as likely to occur in a given position
in the sequence as any other).

Glossary - 40 - Elevens Student Lab Guide

random number generator: See pseudo-random number generator.

refactor: Reorganizing code. One example of refactoring is creating helper methods to simplify code
or eliminate duplicate code. Another is splitting a class into a superclass and a subclass, putting
the code that would be common to other subclasses into the new superclass.

selection shuffle: A card-shuffling method that works similarly to the selection sort. It randomly
selects a card for each position in the deck from the remaining unselected cards.

shuffle: A method of permuting (mixing up) the cards in a deck. See perfect shuffle and selection
shuffle.

simulation: Imitation, using a computer program, of some real-world process. The “actors” in the
process correspond to objects and variables in the simulation, while the interactions between the
actors correspond to program methods.

systematic: Performed using a logical step-by-step process.

truncation: Removal of the fractional part of a real or double value, producing an integer.

References

The Complete Book of Solitaire and Patience Games, by Albert H. Morehead and Geoffrey Mott-Smith,
Bantam Books (1977).

	Blank Page

